Currently serving26318packages,22483articles, and64229datasets by1263organizations,13663 maintainers and22071 contributors.
vimc
lcbc-uio
stan-dev
pharmaverse
r-spatial
tidyverse
ropengov
rstudio
r-lib
ropensci
bioc
r-forge
kwb-r
pik-piam
hypertidy
poissonconsulting
mrc-ide
tidymodels
pecanproject
insightsengineering
thinkr-open
inbo
mlr-org
ggseg
ohdsi
modeloriented
paws-r
predictiveecology
flr
ropenspain
bnosac
sciviews
mrcieu
openvolley
repboxr
rmi-pacta
epiverse-trace
nlmixr2
frbcesab
ices-tools-prod
yulab-smu
statnet
azure
appsilon
bips-hb
mlverse
riatelab
cloudyr
epiforecasts
rjdverse
tmsalab
dreamrs
hubverse-org
usepa
openpharma
bupaverse
usaid-oha-si
coatless-rpkg
darwin-eu
easystats
ambiorix-web
certe-medical-epidemiology
business-science
merck
rsquaredacademy
uscbiostats
spatstat
nutriverse
r-dbi
hugheylab
bluegreen-labs
rikenbit
reconhub
epicentre-msf
gesistsa
terminological
cogdisreslab
apache
ctu-bern
rspatial
ipeagit
data-cleaning
biometris
humaniverse
ifpri
nflverse
ocbe-uio
lbbe-software
doi-usgs
csids
stscl
piecepackr
tlverse
dynverse
mazamascience
winvector
Want to learn more about r-universe? Have a look atropensci.org/r-universeor updates from the rOpenSci blog:
Showing 1 of total 1 results (show query)
joonhap
Parameter inference methods for models defined implicitly using a random simulator. Inference is carried out using simulation-based estimates of the log-likelihood of the data. The inference methods implemented in this package are explained in Park, J. (2025) <doi:10.48550/arxiv.2311.09446>. These methods are built on a simulation metamodel which assumes that the estimates of the log-likelihood are approximately normally distributed with the mean function that is locally quadratic around its maximum. Parameter estimation and uncertainty quantification can be carried out using the ht() function (for hypothesis testing) and the ci() function (for constructing a confidence interval for one-dimensional parameters).
Maintained by Joonha Park. Last updated 4 days ago.
cpp