Currently serving26343packages,22657articles, and64224datasets by1265organizations,13663 maintainers and22193 contributors.
vimc
lcbc-uio
stan-dev
pharmaverse
r-spatial
tidyverse
ropengov
rstudio
r-lib
ropensci
bioc
r-forge
kwb-r
pik-piam
hypertidy
poissonconsulting
mrc-ide
pecanproject
tidymodels
insightsengineering
thinkr-open
mlr-org
inbo
ohdsi
ggseg
modeloriented
predictiveecology
paws-r
flr
ropenspain
bnosac
sciviews
openvolley
rmi-pacta
repboxr
mrcieu
epiverse-trace
nlmixr2
ices-tools-prod
yulab-smu
frbcesab
statnet
riatelab
azure
mlverse
bips-hb
appsilon
cloudyr
rjdverse
epiforecasts
tmsalab
openpharma
hubverse-org
bupaverse
usepa
dreamrs
usaid-oha-si
ambiorix-web
merck
business-science
certe-medical-epidemiology
easystats
darwin-eu
coatless-rpkg
r-dbi
bluegreen-labs
nutriverse
hugheylab
uscbiostats
rsquaredacademy
spatstat
traitecoevo
rikenbit
aus-doh-safety-and-quality
rspatial
terminological
humaniverse
gesistsa
ocbe-uio
ipeagit
ctu-bern
ifpri
nflverse
reconhub
cogdisreslab
data-cleaning
apache
epicentre-msf
biometris
dynverse
cleanzr
rformassspectrometry
stscl
gamlss-dev
cynkra
csids
Want to learn more about r-universe? Have a look atropensci.org/r-universeor updates from the rOpenSci blog:
Showing 1 of total 1 results (show query)
cran
Implements the approach described in Fong and Grimmer (2016) <https://aclweb.org/anthology/P/P16/P16-1151.pdf> for automatically discovering latent treatments from a corpus and estimating the average marginal component effect (AMCE) of each treatment. The data is divided into a training and test set. The supervised Indian Buffet Process (sibp) is used to discover latent treatments in the training set. The fitted model is then applied to the test set to infer the values of the latent treatments in the test set. Finally, Y is regressed on the latent treatments in the test set to estimate the causal effect of each treatment.
Maintained by Christian Fong. Last updated 6 years ago.