Currently serving26341packages,22656articles, and64225datasets by1265organizations,13662 maintainers and22192 contributors.
vimc
lcbc-uio
stan-dev
pharmaverse
r-spatial
tidyverse
ropengov
rstudio
r-lib
ropensci
bioc
r-forge
kwb-r
pik-piam
hypertidy
poissonconsulting
mrc-ide
tidymodels
pecanproject
insightsengineering
thinkr-open
inbo
mlr-org
ohdsi
ggseg
modeloriented
predictiveecology
paws-r
ropenspain
flr
bnosac
sciviews
mrcieu
rmi-pacta
openvolley
repboxr
epiverse-trace
nlmixr2
yulab-smu
ices-tools-prod
frbcesab
azure
statnet
riatelab
mlverse
appsilon
bips-hb
rjdverse
cloudyr
epiforecasts
tmsalab
usepa
bupaverse
hubverse-org
usaid-oha-si
dreamrs
openpharma
darwin-eu
ambiorix-web
certe-medical-epidemiology
easystats
business-science
merck
coatless-rpkg
hugheylab
bluegreen-labs
spatstat
rsquaredacademy
uscbiostats
traitecoevo
r-dbi
rikenbit
nutriverse
terminological
humaniverse
ifpri
gesistsa
aus-doh-safety-and-quality
reconhub
ipeagit
ocbe-uio
data-cleaning
nflverse
biometris
epicentre-msf
apache
rspatial
ctu-bern
cogdisreslab
dynverse
statisticsnorway
cynkra
lbbe-software
cleanzr
quanteda
decisionpatterns
Want to learn more about r-universe? Have a look atropensci.org/r-universeor updates from the rOpenSci blog:
Showing 1 of total 1 results (show query)
cran
Implements the approach described in Fong and Grimmer (2016) <https://aclweb.org/anthology/P/P16/P16-1151.pdf> for automatically discovering latent treatments from a corpus and estimating the average marginal component effect (AMCE) of each treatment. The data is divided into a training and test set. The supervised Indian Buffet Process (sibp) is used to discover latent treatments in the training set. The fitted model is then applied to the test set to infer the values of the latent treatments in the test set. Finally, Y is regressed on the latent treatments in the test set to estimate the causal effect of each treatment.
Maintained by Christian Fong. Last updated 6 years ago.