Showing 2 of total 2 results (show query)
easystats
parameters:Processing of Model Parameters
Utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models (see list of supported models using the function 'insight::supported_models()'), this package implements features like bootstrapping or simulating of parameters and models, feature reduction (feature extraction and variable selection) as well as functions to describe data and variable characteristics (e.g. skewness, kurtosis, smoothness or distribution).
Maintained by Daniel Lüdecke. Last updated 8 days ago.
betabootstrapciconfidence-intervalsdata-reductioneasystatsfafeature-extractionfeature-reductionhacktoberfestparameterspcapvaluesregression-modelsrobust-statisticsstandardizestandardized-estimatesstatistical-models
454 stars 15.67 score 1.8k scripts 56 dependentsjeremygelb
geocmeans:Implementing Methods for Spatial Fuzzy Unsupervised Classification
Provides functions to apply spatial fuzzy unsupervised classification, visualize and interpret results. This method is well suited when the user wants to analyze data with a fuzzy clustering algorithm and to account for the spatial dimension of the dataset. In addition, indexes for estimating the spatial consistency and classification quality are proposed. The methods were originally proposed in the field of brain imagery (seed Cai and al. 2007 <doi:10.1016/j.patcog.2006.07.011> and Zaho and al. 2013 <doi:10.1016/j.dsp.2012.09.016>) and recently applied in geography (see Gelb and Apparicio <doi:10.4000/cybergeo.36414>).
Maintained by Jeremy Gelb. Last updated 4 months ago.
clusteringcmeansfuzzy-classification-algorithmsspatial-analysisspatial-fuzzy-cmeansunsupervised-learningcppopenmp
28 stars 6.10 score 90 scripts