Showing 45 of total 45 results (show query)

r-forge

surveillance:Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena

Statistical methods for the modeling and monitoring of time series of counts, proportions and categorical data, as well as for the modeling of continuous-time point processes of epidemic phenomena. The monitoring methods focus on aberration detection in count data time series from public health surveillance of communicable diseases, but applications could just as well originate from environmetrics, reliability engineering, econometrics, or social sciences. The package implements many typical outbreak detection procedures such as the (improved) Farrington algorithm, or the negative binomial GLR-CUSUM method of Hoehle and Paul (2008) <doi:10.1016/j.csda.2008.02.015>. A novel CUSUM approach combining logistic and multinomial logistic modeling is also included. The package contains several real-world data sets, the ability to simulate outbreak data, and to visualize the results of the monitoring in a temporal, spatial or spatio-temporal fashion. A recent overview of the available monitoring procedures is given by Salmon et al. (2016) <doi:10.18637/jss.v070.i10>. For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic modeling frameworks with tools for visualization, likelihood inference, and simulation. hhh4() estimates models for (multivariate) count time series following Paul and Held (2011) <doi:10.1002/sim.4177> and Meyer and Held (2014) <doi:10.1214/14-AOAS743>. twinSIR() models the susceptible-infectious-recovered (SIR) event history of a fixed population, e.g, epidemics across farms or networks, as a multivariate point process as proposed by Hoehle (2009) <doi:10.1002/bimj.200900050>. twinstim() estimates self-exciting point process models for a spatio-temporal point pattern of infective events, e.g., time-stamped geo-referenced surveillance data, as proposed by Meyer et al. (2012) <doi:10.1111/j.1541-0420.2011.01684.x>. A recent overview of the implemented space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2017) <doi:10.18637/jss.v077.i11>.

Maintained by Sebastian Meyer. Last updated 14 hours ago.

cpp

2 stars 10.65 score 446 scripts 3 dependents

luqqe

outliers:Tests for Outliers

A collection of some tests commonly used for identifying outliers.

Maintained by Lukasz Komsta. Last updated 3 years ago.

1 stars 6.56 score 888 scripts 11 dependents

chrisaddy

rrr:Reduced-Rank Regression

Reduced-rank regression, diagnostics and graphics.

Maintained by Chris Addy. Last updated 8 years ago.

10 stars 5.06 score 23 scripts

skonigor

CIEE:Estimating and Testing Direct Effects in Directed Acyclic Graphs using Estimating Equations

In many studies across different disciplines, detailed measures of the variables of interest are available. If assumptions can be made regarding the direction of effects between the assessed variables, this has to be considered in the analysis. The functions in this package implement the novel approach CIEE (causal inference using estimating equations; Konigorski et al., 2018, <DOI:10.1002/gepi.22107>) for estimating and testing the direct effect of an exposure variable on a primary outcome, while adjusting for indirect effects of the exposure on the primary outcome through a secondary intermediate outcome and potential factors influencing the secondary outcome. The underlying directed acyclic graph (DAG) of this considered model is described in the vignette. CIEE can be applied to studies in many different fields, and it is implemented here for the analysis of a continuous primary outcome and a time-to-event primary outcome subject to censoring. CIEE uses estimating equations to obtain estimates of the direct effect and robust sandwich standard error estimates. Then, a large-sample Wald-type test statistic is computed for testing the absence of the direct effect. Additionally, standard multiple regression, regression of residuals, and the structural equation modeling approach are implemented for comparison.

Maintained by Stefan Konigorski. Last updated 7 years ago.

2.52 score 11 scripts

mpbohorquezc

SpatFD:Functional Geostatistics: Univariate and Multivariate Functional Spatial Prediction

Performance of functional kriging, cokriging, optimal sampling and simulation for spatial prediction of functional data. The framework of spatial prediction, optimal sampling and simulation are extended from scalar to functional data. 'SpatFD' is based on the Karhunen-Loève expansion that allows to represent the observed functions in terms of its empirical functional principal components. Based on this approach, the functional auto-covariances and cross-covariances required for spatial functional predictions and optimal sampling, are completely determined by the sum of the spatial auto-covariances and cross-covariances of the respective score components. The package provides new classes of data and functions for modeling spatial dependence structure among curves. The spatial prediction of curves at unsampled locations can be carried out using two types of predictors, and both of them report, the respective variances of the prediction error. In addition, there is a function for the determination of spatial locations sampling configuration that ensures minimum variance of spatial functional prediction. There are also two functions for plotting predicted curves at each location and mapping the surface at each time point, respectively. References Bohorquez, M., Giraldo, R., and Mateu, J. (2016) <doi:10.1007/s10260-015-0340-9>, Bohorquez, M., Giraldo, R., and Mateu, J. (2016) <doi:10.1007/s00477-016-1266-y>, Bohorquez M., Giraldo R. and Mateu J. (2021) <doi:10.1002/9781119387916>.

Maintained by Martha Patricia Bohorquez Castañeda. Last updated 9 months ago.

1.70 score 7 scripts