Showing 5 of total 5 results (show query)
biodiverse
unmarked:Models for Data from Unmarked Animals
Fits hierarchical models of animal abundance and occurrence to data collected using survey methods such as point counts, site occupancy sampling, distance sampling, removal sampling, and double observer sampling. Parameters governing the state and observation processes can be modeled as functions of covariates. References: Kellner et al. (2023) <doi:10.1111/2041-210X.14123>, Fiske and Chandler (2011) <doi:10.18637/jss.v043.i10>.
Maintained by Ken Kellner. Last updated 11 days ago.
4 stars 13.02 score 652 scripts 12 dependentssmartdata-analysis-and-statistics
SimTOST:Sample Size Estimation for Bio-Equivalence Trials Through Simulation
Sample size estimation for bio-equivalence trials is supported through a simulation-based approach that extends the Two One-Sided Tests (TOST) procedure. The methodology provides flexibility in hypothesis testing, accommodates multiple treatment comparisons, and accounts for correlated endpoints. Users can model complex trial scenarios, including parallel and crossover designs, intra-subject variability, and different equivalence margins. Monte Carlo simulations enable accurate estimation of power and type I error rates, ensuring well-calibrated study designs. The statistical framework builds on established methods for equivalence testing and multiple hypothesis testing in bio-equivalence studies, as described in Schuirmann (1987) <doi:10.1007/BF01068419>, Mielke et al. (2018) <doi:10.1080/19466315.2017.1371071>, Shieh (2022) <doi:10.1371/journal.pone.0269128>, and Sozu et al. (2015) <doi:10.1007/978-3-319-22005-5>. Comprehensive documentation and vignettes guide users through implementation and interpretation of results.
Maintained by Thomas Debray. Last updated 1 months ago.
mcmcmulti-armmultiple-comparisonssample-size-calculationsample-size-estimationtrial-simulationopenblascpp
2 stars 6.47 score 7 scriptsbioc
clippda:A package for the clinical proteomic profiling data analysis
Methods for the nalysis of data from clinical proteomic profiling studies. The focus is on the studies of human subjects, which are often observational case-control by design and have technical replicates. A method for sample size determination for planning these studies is proposed. It incorporates routines for adjusting for the expected heterogeneities and imbalances in the data and the within-sample replicate correlations.
Maintained by Stephen Nyangoma. Last updated 5 months ago.
proteomicsonechannelpreprocessingdifferentialexpressionmultiplecomparison
3.30 score 2 scriptsbioc
Rtreemix:Rtreemix: Mutagenetic trees mixture models.
Rtreemix is a package that offers an environment for estimating the mutagenetic trees mixture models from cross-sectional data and using them for various predictions. It includes functions for fitting the trees mixture models, likelihood computations, model comparisons, waiting time estimations, stability analysis, etc.
Maintained by Jasmina Bogojeska. Last updated 1 months ago.
2.86 score 12 scriptstswanson222
modnets:Modeling Moderated Networks
Methods for modeling moderator variables in cross-sectional, temporal, and multi-level networks. Includes model selection techniques and a variety of plotting functions. Implements the methods described by Swanson (2020) <https://www.proquest.com/openview/d151ab6b93ad47e3f0d5e59d7b6fd3d3>.
Maintained by Trevor Swanson. Last updated 3 years ago.
2.70 score 6 scripts