Showing 14 of total 14 results (show query)
twolodzko
extraDistr:Additional Univariate and Multivariate Distributions
Density, distribution function, quantile function and random generation for a number of univariate and multivariate distributions. This package implements the following distributions: Bernoulli, beta-binomial, beta-negative binomial, beta prime, Bhattacharjee, Birnbaum-Saunders, bivariate normal, bivariate Poisson, categorical, Dirichlet, Dirichlet-multinomial, discrete gamma, discrete Laplace, discrete normal, discrete uniform, discrete Weibull, Frechet, gamma-Poisson, generalized extreme value, Gompertz, generalized Pareto, Gumbel, half-Cauchy, half-normal, half-t, Huber density, inverse chi-squared, inverse-gamma, Kumaraswamy, Laplace, location-scale t, logarithmic, Lomax, multivariate hypergeometric, multinomial, negative hypergeometric, non-standard beta, normal mixture, Poisson mixture, Pareto, power, reparametrized beta, Rayleigh, shifted Gompertz, Skellam, slash, triangular, truncated binomial, truncated normal, truncated Poisson, Tukey lambda, Wald, zero-inflated binomial, zero-inflated negative binomial, zero-inflated Poisson.
Maintained by Tymoteusz Wolodzko. Last updated 25 days ago.
c-plus-plusc-plus-plus-11distributionmultivariate-distributionsprobabilityrandom-generationrcppstatisticscpp
53 stars 11.60 score 1.5k scripts 107 dependentslbelzile
mev:Modelling of Extreme Values
Various tools for the analysis of univariate, multivariate and functional extremes. Exact simulation from max-stable processes [Dombry, Engelke and Oesting (2016) <doi:10.1093/biomet/asw008>, R-Pareto processes for various parametric models, including Brown-Resnick (Wadsworth and Tawn, 2014, <doi:10.1093/biomet/ast042>) and Extremal Student (Thibaud and Opitz, 2015, <doi:10.1093/biomet/asv045>). Threshold selection methods, including Wadsworth (2016) <doi:10.1080/00401706.2014.998345>, and Northrop and Coleman (2014) <doi:10.1007/s10687-014-0183-z>. Multivariate extreme diagnostics. Estimation and likelihoods for univariate extremes, e.g., Coles (2001) <doi:10.1007/978-1-4471-3675-0>.
Maintained by Leo Belzile. Last updated 5 months ago.
extreme-value-statisticslikelihood-functionsmax-stablesimulationthreshold-selectionopenblascppopenmp
14 stars 8.21 score 94 scripts 4 dependentscran
evd:Functions for Extreme Value Distributions
Extends simulation, distribution, quantile and density functions to univariate and multivariate parametric extreme value distributions, and provides fitting functions which calculate maximum likelihood estimates for univariate and bivariate maxima models, and for univariate and bivariate threshold models.
Maintained by Alec Stephenson. Last updated 6 months ago.
2 stars 7.58 score 84 dependentspaulnorthrop
revdbayes:Ratio-of-Uniforms Sampling for Bayesian Extreme Value Analysis
Provides functions for the Bayesian analysis of extreme value models. The 'rust' package <https://cran.r-project.org/package=rust> is used to simulate a random sample from the required posterior distribution. The functionality of 'revdbayes' is similar to the 'evdbayes' package <https://cran.r-project.org/package=evdbayes>, which uses Markov Chain Monte Carlo ('MCMC') methods for posterior simulation. In addition, there are functions for making inferences about the extremal index, using the models for threshold inter-exceedance times of Suveges and Davison (2010) <doi:10.1214/09-AOAS292> and Holesovsky and Fusek (2020) <doi:10.1007/s10687-020-00374-3>. Also provided are d,p,q,r functions for the Generalised Extreme Value ('GEV') and Generalised Pareto ('GP') distributions that deal appropriately with cases where the shape parameter is very close to zero.
Maintained by Paul J. Northrop. Last updated 7 months ago.
analysisbayesianextremeextreme-value-statisticsextremesgeneralized-pareto-distributiongevinferencenhpppoint-processposteriorpredictivercppvalueopenblascpp
4 stars 7.41 score 58 scripts 4 dependentsr-forge
fExtremes:Rmetrics - Modelling Extreme Events in Finance
Provides functions for analysing and modelling extreme events in financial time Series. The topics include: (i) data pre-processing, (ii) explorative data analysis, (iii) peak over threshold modelling, (iv) block maxima modelling, (v) estimation of VaR and CVaR, and (vi) the computation of the extreme index.
Maintained by Paul J. Northrop. Last updated 10 days ago.
1 stars 7.29 score 118 scripts 4 dependentstychelab
CoSMoS:Complete Stochastic Modelling Solution
Makes univariate, multivariate, or random fields simulations precise and simple. Just select the desired time series or random fields’ properties and it will do the rest. CoSMoS is based on the framework described in Papalexiou (2018, <doi:10.1016/j.advwatres.2018.02.013>), extended for random fields in Papalexiou and Serinaldi (2020, <doi:10.1029/2019WR026331>), and further advanced in Papalexiou et al. (2021, <doi:10.1029/2020WR029466>) to allow fine-scale space-time simulation of storms (or even cyclone-mimicking fields).
Maintained by Kevin Shook. Last updated 4 years ago.
11 stars 7.10 score 77 scriptsharrysouthworth
texmex:Statistical Modelling of Extreme Values
Statistical extreme value modelling of threshold excesses, maxima and multivariate extremes. Univariate models for threshold excesses and maxima are the Generalised Pareto, and Generalised Extreme Value model respectively. These models may be fitted by using maximum (optionally penalised-)likelihood, or Bayesian estimation, and both classes of models may be fitted with covariates in any/all model parameters. Model diagnostics support the fitting process. Graphical output for visualising fitted models and return level estimates is provided. For serially dependent sequences, the intervals declustering algorithm of Ferro and Segers (2003) <doi:10.1111/1467-9868.00401> is provided, with diagnostic support to aid selection of threshold and declustering horizon. Multivariate modelling is performed via the conditional approach of Heffernan and Tawn (2004) <doi:10.1111/j.1467-9868.2004.02050.x>, with graphical tools for threshold selection and to diagnose estimation convergence.
Maintained by Harry Southworth. Last updated 1 years ago.
7 stars 6.44 score 66 scripts 1 dependentsbpfaff
evir:Extreme Values in R
Functions for extreme value theory, which may be divided into the following groups; exploratory data analysis, block maxima, peaks over thresholds (univariate and bivariate), point processes, gev/gpd distributions.
Maintained by Bernhard Pfaff. Last updated 9 years ago.
2 stars 5.89 score 211 scripts 6 dependentsjlilienthal
TLMoments:Calculate TL-Moments and Convert Them to Distribution Parameters
Calculates empirical TL-moments (trimmed L-moments) of arbitrary order and trimming, and converts them to distribution parameters.
Maintained by Jona Lilienthal. Last updated 3 years ago.
4.79 score 29 scripts 22 dependentsyrobink
ROOPSD:R Object Oriented Programming for Statistical Distribution
Statistical distribution in OOP (Object Oriented Programming) way. This package proposes a R6 class interface to classic statistical distribution, and new distributions can be easily added with the class AbstractDist. A useful point is the generic fit() method for each class, which uses a maximum likelihood estimation to find the parameters of a dataset, see, e.g. Hastie, T. and al (2009) <isbn:978-0-387-84857-0>. Furthermore, the rv_histogram class gives a non-parametric fit, with the same accessors that for the classic distribution. Finally, three random generators useful to build synthetic data are given: a multivariate normal generator, an orthogonal matrix generator, and a symmetric positive definite matrix generator, see Mezzadri, F. (2007) <arXiv:math-ph/0609050>.
Maintained by Yoann Robin. Last updated 2 years ago.
1 stars 4.49 score 5 scripts 12 dependentstpetzoldt
FAdist:Distributions that are Sometimes Used in Hydrology
Probability distributions that are sometimes useful in hydrology.
Maintained by Thomas Petzoldt. Last updated 3 years ago.
4 stars 4.49 score 51 scripts 1 dependentsalexcannon
GEVcdn:GEV Conditional Density Estimation Network
Implements a flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology following Cannon (2010) <doi:10.1002/hyp.7506>.
Maintained by Alex J. Cannon. Last updated 5 years ago.
1 stars 1.00 score 5 scripts