Currently serving26341packages,22656articles, and64225datasets by1265organizations,13662 maintainers and22192 contributors.
vimc
lcbc-uio
stan-dev
pharmaverse
r-spatial
tidyverse
ropengov
rstudio
r-lib
ropensci
bioc
r-forge
kwb-r
pik-piam
hypertidy
poissonconsulting
mrc-ide
pecanproject
tidymodels
insightsengineering
thinkr-open
inbo
mlr-org
ohdsi
ggseg
modeloriented
predictiveecology
paws-r
ropenspain
flr
bnosac
sciviews
openvolley
repboxr
rmi-pacta
mrcieu
nlmixr2
epiverse-trace
yulab-smu
frbcesab
ices-tools-prod
azure
statnet
riatelab
bips-hb
mlverse
appsilon
epiforecasts
rjdverse
cloudyr
tmsalab
hubverse-org
openpharma
usaid-oha-si
bupaverse
usepa
dreamrs
coatless-rpkg
ambiorix-web
merck
business-science
easystats
certe-medical-epidemiology
darwin-eu
spatstat
rikenbit
rsquaredacademy
traitecoevo
uscbiostats
r-dbi
nutriverse
hugheylab
bluegreen-labs
nflverse
epicentre-msf
gesistsa
reconhub
ctu-bern
biometris
rspatial
ocbe-uio
cogdisreslab
apache
humaniverse
aus-doh-safety-and-quality
data-cleaning
terminological
ifpri
ipeagit
statisticsnorway
lbbe-software
piecepackr
doi-usgs
kharchenkolab
tlverse
rformassspectrometry
Want to learn more about r-universe? Have a look atropensci.org/r-universeor updates from the rOpenSci blog:
Showing 1 of total 1 results (show query)
cran
Understanding heterogeneous causal effects based on pretreatment covariates is a crucial step in modern empirical work in data science. Building on the recent developments in Calonico et al (2025) <https://rdpackages.github.io/references/Calonico-Cattaneo-Farrell-Palomba-Titiunik_2025_HTERD.pdf>, this package provides tools for estimation and inference of heterogeneous treatment effects in Regression Discontinuity (RD) Designs. The package includes two main commands: 'rdhte' to conduct estimation and robust bias-corrected inference for conditional RD treatment effects (given choice of bandwidth parameter); and 'rdbwhte', which implements automatic bandwidth selection methods.
Maintained by Sebastian Calonico. Last updated 5 days ago.