Showing 3 of total 3 results (show query)
welch-lab
rliger:Linked Inference of Genomic Experimental Relationships
Uses an extension of nonnegative matrix factorization to identify shared and dataset-specific factors. See Welch J, Kozareva V, et al (2019) <doi:10.1016/j.cell.2019.05.006>, and Liu J, Gao C, Sodicoff J, et al (2020) <doi:10.1038/s41596-020-0391-8> for more details.
Maintained by Yichen Wang. Last updated 2 months ago.
nonnegative-matrix-factorizationsingle-cellopenblascpp
408 stars 10.77 score 334 scripts 1 dependentsbioc
casper:Characterization of Alternative Splicing based on Paired-End Reads
Infer alternative splicing from paired-end RNA-seq data. The model is based on counting paths across exons, rather than pairwise exon connections, and estimates the fragment size and start distributions non-parametrically, which improves estimation precision.
Maintained by David Rossell. Last updated 4 months ago.
immunooncologygeneexpressiondifferentialexpressiontranscriptionrnaseqsequencingcpp
5.02 score 66 scriptsbioc
PRONE:The PROteomics Normalization Evaluator
High-throughput omics data are often affected by systematic biases introduced throughout all the steps of a clinical study, from sample collection to quantification. Normalization methods aim to adjust for these biases to make the actual biological signal more prominent. However, selecting an appropriate normalization method is challenging due to the wide range of available approaches. Therefore, a comparative evaluation of unnormalized and normalized data is essential in identifying an appropriate normalization strategy for a specific data set. This R package provides different functions for preprocessing, normalizing, and evaluating different normalization approaches. Furthermore, normalization methods can be evaluated on downstream steps, such as differential expression analysis and statistical enrichment analysis. Spike-in data sets with known ground truth and real-world data sets of biological experiments acquired by either tandem mass tag (TMT) or label-free quantification (LFQ) can be analyzed.
Maintained by Lis Arend. Last updated 9 days ago.
proteomicspreprocessingnormalizationdifferentialexpressionvisualizationdata-analysisevaluation
2 stars 4.41 score 9 scripts