Showing 3 of total 3 results (show query)
paul-buerkner
brms:Bayesian Regression Models using 'Stan'
Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit -- among others -- linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: Bürkner (2017) <doi:10.18637/jss.v080.i01>; Bürkner (2018) <doi:10.32614/RJ-2018-017>; Bürkner (2021) <doi:10.18637/jss.v100.i05>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.
Maintained by Paul-Christian Bürkner. Last updated 2 days ago.
bayesian-inferencebrmsmultilevel-modelsstanstatistical-models
1.3k stars 16.62 score 13k scripts 35 dependentsmjskay
ggdist:Visualizations of Distributions and Uncertainty
Provides primitives for visualizing distributions using 'ggplot2' that are particularly tuned for visualizing uncertainty in either a frequentist or Bayesian mode. Both analytical distributions (such as frequentist confidence distributions or Bayesian priors) and distributions represented as samples (such as bootstrap distributions or Bayesian posterior samples) are easily visualized. Visualization primitives include but are not limited to: points with multiple uncertainty intervals, eye plots (Spiegelhalter D., 1999) <https://ideas.repec.org/a/bla/jorssa/v162y1999i1p45-58.html>, density plots, gradient plots, dot plots (Wilkinson L., 1999) <doi:10.1080/00031305.1999.10474474>, quantile dot plots (Kay M., Kola T., Hullman J., Munson S., 2016) <doi:10.1145/2858036.2858558>, complementary cumulative distribution function barplots (Fernandes M., Walls L., Munson S., Hullman J., Kay M., 2018) <doi:10.1145/3173574.3173718>, and fit curves with multiple uncertainty ribbons.
Maintained by Matthew Kay. Last updated 4 months ago.
ggplot2uncertaintyuncertainty-visualizationvisualizationcpp
859 stars 14.95 score 3.1k scripts 62 dependentsmjskay
tidybayes:Tidy Data and 'Geoms' for Bayesian Models
Compose data for and extract, manipulate, and visualize posterior draws from Bayesian models ('JAGS', 'Stan', 'rstanarm', 'brms', 'MCMCglmm', 'coda', ...) in a tidy data format. Functions are provided to help extract tidy data frames of draws from Bayesian models and that generate point summaries and intervals in a tidy format. In addition, 'ggplot2' 'geoms' and 'stats' are provided for common visualization primitives like points with multiple uncertainty intervals, eye plots (intervals plus densities), and fit curves with multiple, arbitrary uncertainty bands.
Maintained by Matthew Kay. Last updated 7 months ago.
bayesian-data-analysisbrmsggplot2jagsstantidy-datavisualization
733 stars 14.72 score 7.3k scripts 20 dependents