Currently serving26333packages,22493articles, and64239datasets by1264organizations,13669 maintainers and22078 contributors.
vimc
lcbc-uio
stan-dev
pharmaverse
r-spatial
tidyverse
ropengov
rstudio
r-lib
ropensci
bioc
r-forge
kwb-r
pik-piam
hypertidy
poissonconsulting
mrc-ide
pecanproject
tidymodels
insightsengineering
thinkr-open
inbo
mlr-org
ggseg
ohdsi
modeloriented
predictiveecology
paws-r
flr
ropenspain
sciviews
bnosac
mrcieu
openvolley
rmi-pacta
repboxr
nlmixr2
epiverse-trace
ices-tools-prod
yulab-smu
frbcesab
azure
statnet
appsilon
bips-hb
mlverse
riatelab
epiforecasts
rjdverse
cloudyr
tmsalab
usepa
dreamrs
usaid-oha-si
openpharma
bupaverse
hubverse-org
certe-medical-epidemiology
business-science
easystats
darwin-eu
merck
coatless-rpkg
ambiorix-web
rsquaredacademy
spatstat
r-dbi
nutriverse
hugheylab
rikenbit
bluegreen-labs
uscbiostats
nflverse
gesistsa
ipeagit
apache
ocbe-uio
humaniverse
epicentre-msf
rspatial
ctu-bern
ifpri
biometris
cogdisreslab
reconhub
terminological
data-cleaning
mazamascience
statisticsnorway
oxfordihtm
winvector
lbbe-software
cynkra
atsa-es
kharchenkolab
csids
Want to learn more about r-universe? Have a look atropensci.org/r-universeor updates from the rOpenSci blog:
Showing 1 of total 1 results (show query)
joonhap
Parameter inference methods for models defined implicitly using a random simulator. Inference is carried out using simulation-based estimates of the log-likelihood of the data. The inference methods implemented in this package are explained in Park, J. (2025) <doi:10.48550/arxiv.2311.09446>. These methods are built on a simulation metamodel which assumes that the estimates of the log-likelihood are approximately normally distributed with the mean function that is locally quadratic around its maximum. Parameter estimation and uncertainty quantification can be carried out using the ht() function (for hypothesis testing) and the ci() function (for constructing a confidence interval for one-dimensional parameters).
Maintained by Joonha Park. Last updated 5 days ago.
cpp