Showing 4 of total 4 results (show query)
bioc
xcms:LC-MS and GC-MS Data Analysis
Framework for processing and visualization of chromatographically separated and single-spectra mass spectral data. Imports from AIA/ANDI NetCDF, mzXML, mzData and mzML files. Preprocesses data for high-throughput, untargeted analyte profiling.
Maintained by Steffen Neumann. Last updated 18 days ago.
immunooncologymassspectrometrymetabolomicsbioconductorfeature-detectionmass-spectrometrypeak-detectioncpp
196 stars 14.31 score 984 scripts 11 dependentsbioc
Spectra:Spectra Infrastructure for Mass Spectrometry Data
The Spectra package defines an efficient infrastructure for storing and handling mass spectrometry spectra and functionality to subset, process, visualize and compare spectra data. It provides different implementations (backends) to store mass spectrometry data. These comprise backends tuned for fast data access and processing and backends for very large data sets ensuring a small memory footprint.
Maintained by RforMassSpectrometry Package Maintainer. Last updated 25 days ago.
infrastructureproteomicsmassspectrometrymetabolomicsbioconductorhacktoberfestmass-spectrometry
41 stars 13.01 score 254 scripts 35 dependentsbioc
ProtGenerics:Generic infrastructure for Bioconductor mass spectrometry packages
S4 generic functions and classes needed by Bioconductor proteomics packages.
Maintained by Laurent Gatto. Last updated 3 months ago.
infrastructureproteomicsmassspectrometrybioconductormass-spectrometrymetabolomics
8 stars 9.36 score 4 scripts 188 dependentsbioc
LOBSTAHS:Lipid and Oxylipin Biomarker Screening through Adduct Hierarchy Sequences
LOBSTAHS is a multifunction package for screening, annotation, and putative identification of mass spectral features in large, HPLC-MS lipid datasets. In silico data for a wide range of lipids, oxidized lipids, and oxylipins can be generated from user-supplied structural criteria with a database generation function. LOBSTAHS then applies these databases to assign putative compound identities to features in any high-mass accuracy dataset that has been processed using xcms and CAMERA. Users can then apply a series of orthogonal screening criteria based on adduct ion formation patterns, chromatographic retention time, and other properties, to evaluate and assign confidence scores to this list of preliminary assignments. During the screening routine, LOBSTAHS rejects assignments that do not meet the specified criteria, identifies potential isomers and isobars, and assigns a variety of annotation codes to assist the user in evaluating the accuracy of each assignment.
Maintained by Henry Holm. Last updated 5 months ago.
immunooncologymassspectrometrymetabolomicslipidomicsdataimportadductalgaebioconductorhplc-esi-mslipidmass-spectrometryoxidative-stress-biomarkersoxidized-lipidsoxylipinsplankton
8 stars 6.56 score 9 scripts