Showing 2 of total 2 results (show query)
mhahsler
dbscan:Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Related Algorithms
A fast reimplementation of several density-based algorithms of the DBSCAN family. Includes the clustering algorithms DBSCAN (density-based spatial clustering of applications with noise) and HDBSCAN (hierarchical DBSCAN), the ordering algorithm OPTICS (ordering points to identify the clustering structure), shared nearest neighbor clustering, and the outlier detection algorithms LOF (local outlier factor) and GLOSH (global-local outlier score from hierarchies). The implementations use the kd-tree data structure (from library ANN) for faster k-nearest neighbor search. An R interface to fast kNN and fixed-radius NN search is also provided. Hahsler, Piekenbrock and Doran (2019) <doi:10.18637/jss.v091.i01>.
Maintained by Michael Hahsler. Last updated 2 months ago.
clusteringdbscandensity-based-clusteringhdbscanlofopticscpp
324 stars 15.60 score 1.6k scripts 85 dependentscran
pointdensityP:Point Density for Geospatial Data
The function pointdensity returns a density count and the temporal average for every point in the original list. The dataframe returned includes four columns: lat, lon, count, and date_avg. The "lat" column is the original latitude data; the "lon" column is the original longitude data; the "count" is the density count of the number of points within a radius of radius*grid_size (the neighborhood); and the date_avg column includes the average date of each point in the neighborhood.
Maintained by Paul Evangelista. Last updated 4 years ago.
1 stars 1.00 score