Showing 15 of total 15 results (show query)
bioc
DESeq2:Differential gene expression analysis based on the negative binomial distribution
Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution.
Maintained by Michael Love. Last updated 25 days ago.
sequencingrnaseqchipseqgeneexpressiontranscriptionnormalizationdifferentialexpressionbayesianregressionprincipalcomponentclusteringimmunooncologyopenblascpp
375 stars 16.11 score 17k scripts 115 dependentsbioc
BiocGenerics:S4 generic functions used in Bioconductor
The package defines many S4 generic functions used in Bioconductor.
Maintained by Hervé Pagès. Last updated 2 months ago.
infrastructurebioconductor-packagecore-package
12 stars 14.22 score 612 scripts 2.2k dependentsbioc
scater:Single-Cell Analysis Toolkit for Gene Expression Data in R
A collection of tools for doing various analyses of single-cell RNA-seq gene expression data, with a focus on quality control and visualization.
Maintained by Alan OCallaghan. Last updated 23 days ago.
immunooncologysinglecellrnaseqqualitycontrolpreprocessingnormalizationvisualizationdimensionreductiontranscriptomicsgeneexpressionsequencingsoftwaredataimportdatarepresentationinfrastructurecoverage
11.07 score 12k scripts 43 dependentsbioc
EDASeq:Exploratory Data Analysis and Normalization for RNA-Seq
Numerical and graphical summaries of RNA-Seq read data. Within-lane normalization procedures to adjust for GC-content effect (or other gene-level effects) on read counts: loess robust local regression, global-scaling, and full-quantile normalization (Risso et al., 2011). Between-lane normalization procedures to adjust for distributional differences between lanes (e.g., sequencing depth): global-scaling and full-quantile normalization (Bullard et al., 2010).
Maintained by Davide Risso. Last updated 5 months ago.
immunooncologysequencingrnaseqpreprocessingqualitycontroldifferentialexpression
5 stars 10.24 score 594 scripts 9 dependentsbioc
singleCellTK:Comprehensive and Interactive Analysis of Single Cell RNA-Seq Data
The Single Cell Toolkit (SCTK) in the singleCellTK package provides an interface to popular tools for importing, quality control, analysis, and visualization of single cell RNA-seq data. SCTK allows users to seamlessly integrate tools from various packages at different stages of the analysis workflow. A general "a la carte" workflow gives users the ability access to multiple methods for data importing, calculation of general QC metrics, doublet detection, ambient RNA estimation and removal, filtering, normalization, batch correction or integration, dimensionality reduction, 2-D embedding, clustering, marker detection, differential expression, cell type labeling, pathway analysis, and data exporting. Curated workflows can be used to run Seurat and Celda. Streamlined quality control can be performed on the command line using the SCTK-QC pipeline. Users can analyze their data using commands in the R console or by using an interactive Shiny Graphical User Interface (GUI). Specific analyses or entire workflows can be summarized and shared with comprehensive HTML reports generated by Rmarkdown. Additional documentation and vignettes can be found at camplab.net/sctk.
Maintained by Joshua David Campbell. Last updated 1 months ago.
singlecellgeneexpressiondifferentialexpressionalignmentclusteringimmunooncologybatcheffectnormalizationqualitycontroldataimportgui
182 stars 10.17 score 252 scriptsbioc
dreamlet:Scalable differential expression analysis of single cell transcriptomics datasets with complex study designs
Recent advances in single cell/nucleus transcriptomic technology has enabled collection of cohort-scale datasets to study cell type specific gene expression differences associated disease state, stimulus, and genetic regulation. The scale of these data, complex study designs, and low read count per cell mean that characterizing cell type specific molecular mechanisms requires a user-frieldly, purpose-build analytical framework. We have developed the dreamlet package that applies a pseudobulk approach and fits a regression model for each gene and cell cluster to test differential expression across individuals associated with a trait of interest. Use of precision-weighted linear mixed models enables accounting for repeated measures study designs, high dimensional batch effects, and varying sequencing depth or observed cells per biosample.
Maintained by Gabriel Hoffman. Last updated 5 days ago.
rnaseqgeneexpressiondifferentialexpressionbatcheffectqualitycontrolregressiongenesetenrichmentgeneregulationepigeneticsfunctionalgenomicstranscriptomicsnormalizationsinglecellpreprocessingsequencingimmunooncologysoftwarecpp
12 stars 8.14 score 128 scriptsbioc
psichomics:Graphical Interface for Alternative Splicing Quantification, Analysis and Visualisation
Interactive R package with an intuitive Shiny-based graphical interface for alternative splicing quantification and integrative analyses of alternative splicing and gene expression based on The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression project (GTEx), Sequence Read Archive (SRA) and user-provided data. The tool interactively performs survival, dimensionality reduction and median- and variance-based differential splicing and gene expression analyses that benefit from the incorporation of clinical and molecular sample-associated features (such as tumour stage or survival). Interactive visual access to genomic mapping and functional annotation of selected alternative splicing events is also included.
Maintained by Nuno Saraiva-Agostinho. Last updated 5 months ago.
sequencingrnaseqalternativesplicingdifferentialsplicingtranscriptionguiprincipalcomponentsurvivalbiomedicalinformaticstranscriptomicsimmunooncologyvisualizationmultiplecomparisongeneexpressiondifferentialexpressionalternative-splicingbioconductordata-analysesdifferential-gene-expressiondifferential-splicing-analysisgene-expressiongtexrecount2rna-seq-datasplicing-quantificationsratcgavast-toolscpp
36 stars 6.95 score 31 scriptsbioc
proActiv:Estimate Promoter Activity from RNA-Seq data
Most human genes have multiple promoters that control the expression of different isoforms. The use of these alternative promoters enables the regulation of isoform expression pre-transcriptionally. Alternative promoters have been found to be important in a wide number of cell types and diseases. proActiv is an R package that enables the analysis of promoters from RNA-seq data. proActiv uses aligned reads as input, and generates counts and normalized promoter activity estimates for each annotated promoter. In particular, proActiv accepts junction files from TopHat2 or STAR or BAM files as inputs. These estimates can then be used to identify which promoter is active, which promoter is inactive, and which promoters change their activity across conditions. proActiv also allows visualization of promoter activity across conditions.
Maintained by Joseph Lee. Last updated 5 months ago.
rnaseqgeneexpressiontranscriptionalternativesplicinggeneregulationdifferentialsplicingfunctionalgenomicsepigeneticstranscriptomicspreprocessingalternative-promotersgenomicspromoter-activitypromoter-annotationrna-seq-data
51 stars 6.66 score 15 scriptsbioc
affycoretools:Functions useful for those doing repetitive analyses with Affymetrix GeneChips
Various wrapper functions that have been written to streamline the more common analyses that a core Biostatistician might see.
Maintained by James W. MacDonald. Last updated 5 months ago.
reportwritingmicroarrayonechannelgeneexpression
6.07 score 117 scriptsbioc
rexposome:Exposome exploration and outcome data analysis
Package that allows to explore the exposome and to perform association analyses between exposures and health outcomes.
Maintained by Xavier Escribà Montagut. Last updated 5 months ago.
softwarebiologicalquestioninfrastructuredataimportdatarepresentationbiomedicalinformaticsexperimentaldesignmultiplecomparisonclassificationclustering
5.70 score 28 scripts 1 dependentsbioc
SurfR:Surface Protein Prediction and Identification
Identify Surface Protein coding genes from a list of candidates. Systematically download data from GEO and TCGA or use your own data. Perform DGE on bulk RNAseq data. Perform Meta-analysis. Descriptive enrichment analysis and plots.
Maintained by Aurora Maurizio. Last updated 16 days ago.
softwaresequencingrnaseqgeneexpressiontranscriptiondifferentialexpressionprincipalcomponentgenesetenrichmentpathwaysbatcheffectfunctionalgenomicsvisualizationdataimportfunctionalpredictiongenepredictiongodgeenrichment-analysismetaanalysisplotsproteinspublic-datasurfacesurfaceome
3 stars 5.43 score 3 scriptsbioc
MAIT:Statistical Analysis of Metabolomic Data
The MAIT package contains functions to perform end-to-end statistical analysis of LC/MS Metabolomic Data. Special emphasis is put on peak annotation and in modular function design of the functions.
Maintained by Pol Sola-Santos. Last updated 5 months ago.
immunooncologymassspectrometrymetabolomicssoftware
4.60 score 20 scriptsmetabocomp
MUVR2:Multivariate Methods with Unbiased Variable Selection
Predictive multivariate modelling for metabolomics. Types: Classification and regression. Methods: Partial Least Squares, Random Forest ans Elastic Net Data structures: Paired and unpaired Validation: repeated double cross-validation (Westerhuis et al. (2008)<doi:10.1007/s11306-007-0099-6>, Filzmoser et al. (2009)<doi:10.1002/cem.1225>) Variable selection: Performed internally, through tuning in the inner cross-validation loop.
Maintained by Yingxiao Yan. Last updated 6 months ago.
2 stars 4.04 score 1 scriptskleinomicslab
mrbin:Metabolomics Data Analysis Functions
A collection of functions for processing and analyzing metabolite data. The namesake function mrbin() converts 1D or 2D Nuclear Magnetic Resonance data into a matrix of values suitable for further data analysis and performs basic processing steps in a reproducible way. Negative values, a common issue in such data, can be replaced by positive values (<doi:10.1021/acs.jproteome.0c00684>). All used parameters are stored in a readable text file and can be restored from that file to enable exact reproduction of the data at a later time. The function fia() ranks features according to their impact on classifier models, especially artificial neural network models.
Maintained by Matthias Klein. Last updated 18 days ago.
artificial-neural-networksfeature-extractionmetabolomicsnmr
2 stars 4.00 score 4 scriptsbioc
qsea:IP-seq data analysis and vizualization
qsea (quantitative sequencing enrichment analysis) was developed as the successor of the MEDIPS package for analyzing data derived from methylated DNA immunoprecipitation (MeDIP) experiments followed by sequencing (MeDIP-seq). However, qsea provides several functionalities for the analysis of other kinds of quantitative sequencing data (e.g. ChIP-seq, MBD-seq, CMS-seq and others) including calculation of differential enrichment between groups of samples.
Maintained by Matthias Lienhard. Last updated 5 months ago.
sequencingdnamethylationcpgislandchipseqpreprocessingnormalizationqualitycontrolvisualizationcopynumbervariationchiponchipdifferentialmethylation
3.30 score 7 scripts