Showing 4 of total 4 results (show query)
satijalab
SeuratObject:Data Structures for Single Cell Data
Defines S4 classes for single-cell genomic data and associated information, such as dimensionality reduction embeddings, nearest-neighbor graphs, and spatially-resolved coordinates. Provides data access methods and R-native hooks to ensure the Seurat object is familiar to other R users. See Satija R, Farrell J, Gennert D, et al (2015) <doi:10.1038/nbt.3192>, Macosko E, Basu A, Satija R, et al (2015) <doi:10.1016/j.cell.2015.05.002>, and Stuart T, Butler A, et al (2019) <doi:10.1016/j.cell.2019.05.031> for more details.
Maintained by Paul Hoffman. Last updated 2 years ago.
25 stars 11.69 score 1.2k scripts 88 dependentsropensci
drake:A Pipeline Toolkit for Reproducible Computation at Scale
A general-purpose computational engine for data analysis, drake rebuilds intermediate data objects when their dependencies change, and it skips work when the results are already up to date. Not every execution starts from scratch, there is native support for parallel and distributed computing, and completed projects have tangible evidence that they are reproducible. Extensive documentation, from beginner-friendly tutorials to practical examples and more, is available at the reference website <https://docs.ropensci.org/drake/> and the online manual <https://books.ropensci.org/drake/>.
Maintained by William Michael Landau. Last updated 4 months ago.
data-sciencedrakehigh-performance-computingmakefilepeer-reviewedpipelinereproducibilityreproducible-researchropensciworkflow
1.3k stars 11.49 score 1.7k scripts 1 dependentsmerck
metalite:ADaM Metadata Structure
A metadata structure for clinical data analysis and reporting based on Analysis Data Model (ADaM) datasets. The package simplifies clinical analysis and reporting tool development by defining standardized inputs, outputs, and workflow. The package can be used to create analysis and reporting planning grid, mock table, and validated analysis and reporting results based on consistent inputs.
Maintained by Yujie Zhao. Last updated 7 months ago.
15 stars 8.89 score 57 scripts 5 dependentsxdomingoal
erah:Automated Spectral Deconvolution, Alignment, and Metabolite Identification in GC/MS-Based Untargeted Metabolomics
Automated compound deconvolution, alignment across samples, and identification of metabolites by spectral library matching in Gas Chromatography - Mass spectrometry (GC-MS) untargeted metabolomics. Outputs a table with compound names, matching scores and the integrated area of the compound for each sample. Package implementation is described in Domingo-Almenara et al. (2016) <doi:10.1021/acs.analchem.6b02927>.
Maintained by Xavier Domingo-Almenara. Last updated 1 years ago.
5 stars 4.70 score 20 scripts