Showing 6 of total 6 results (show query)

r-forge

distr:Object Oriented Implementation of Distributions

S4-classes and methods for distributions.

Maintained by Peter Ruckdeschel. Last updated 2 months ago.

8.77 score 327 scripts 32 dependents

matutosi

pivotea:Create Pivot Table Easily

Pivot easily by specifying rows, columns, values and split.

Maintained by Toshikazu Matsumura. Last updated 8 months ago.

2 stars 4.52 score 11 scripts

cran

Compositional:Compositional Data Analysis

Regression, classification, contour plots, hypothesis testing and fitting of distributions for compositional data are some of the functions included. We further include functions for percentages (or proportions). The standard textbook for such data is John Aitchison's (1986) "The statistical analysis of compositional data". Relevant papers include: a) Tsagris M.T., Preston S. and Wood A.T.A. (2011). "A data-based power transformation for compositional data". Fourth International International Workshop on Compositional Data Analysis. <doi:10.48550/arXiv.1106.1451> b) Tsagris M. (2014). "The k-NN algorithm for compositional data: a revised approach with and without zero values present". Journal of Data Science, 12(3): 519--534. <doi:10.6339/JDS.201407_12(3).0008>. c) Tsagris M. (2015). "A novel, divergence based, regression for compositional data". Proceedings of the 28th Panhellenic Statistics Conference, 15-18 April 2015, Athens, Greece, 430--444. <doi:10.48550/arXiv.1511.07600>. d) Tsagris M. (2015). "Regression analysis with compositional data containing zero values". Chilean Journal of Statistics, 6(2): 47--57. <https://soche.cl/chjs/volumes/06/02/Tsagris(2015).pdf>. e) Tsagris M., Preston S. and Wood A.T.A. (2016). "Improved supervised classification for compositional data using the alpha-transformation". Journal of Classification, 33(2): 243--261. <doi:10.1007/s00357-016-9207-5>. f) Tsagris M., Preston S. and Wood A.T.A. (2017). "Nonparametric hypothesis testing for equality of means on the simplex". Journal of Statistical Computation and Simulation, 87(2): 406--422. <doi:10.1080/00949655.2016.1216554>. g) Tsagris M. and Stewart C. (2018). "A Dirichlet regression model for compositional data with zeros". Lobachevskii Journal of Mathematics, 39(3): 398--412. <doi:10.1134/S1995080218030198>. h) Alenazi A. (2019). "Regression for compositional data with compositional data as predictor variables with or without zero values". Journal of Data Science, 17(1): 219--238. <doi:10.6339/JDS.201901_17(1).0010>. i) Tsagris M. and Stewart C. (2020). "A folded model for compositional data analysis". Australian and New Zealand Journal of Statistics, 62(2): 249--277. <doi:10.1111/anzs.12289>. j) Alenazi A.A. (2022). "f-divergence regression models for compositional data". Pakistan Journal of Statistics and Operation Research, 18(4): 867--882. <doi:10.18187/pjsor.v18i4.3969>. k) Tsagris M. and Stewart C. (2022). "A Review of Flexible Transformations for Modeling Compositional Data". In Advances and Innovations in Statistics and Data Science, pp. 225--234. <doi:10.1007/978-3-031-08329-7_10>. l) Alenazi A. (2023). "A review of compositional data analysis and recent advances". Communications in Statistics--Theory and Methods, 52(16): 5535--5567. <doi:10.1080/03610926.2021.2014890>. m) Tsagris M., Alenazi A. and Stewart C. (2023). "Flexible non-parametric regression models for compositional response data with zeros". Statistics and Computing, 33(106). <doi:10.1007/s11222-023-10277-5>. n) Tsagris. M. (2025). "Constrained least squares simplicial-simplicial regression". Statistics and Computing, 35(27). <doi:10.1007/s11222-024-10560-z>. o) Sevinc V. and Tsagris. M. (2024). "Energy Based Equality of Distributions Testing for Compositional Data". <doi:10.48550/arXiv.2412.05199>.

Maintained by Michail Tsagris. Last updated 3 months ago.

3 stars 3.64 score 4 dependents

grosenberger

aLFQ:Estimating Absolute Protein Quantities from Label-Free LC-MS/MS Proteomics Data

Determination of absolute protein quantities is necessary for multiple applications, such as mechanistic modeling of biological systems. Quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics can measure relative protein abundance on a system-wide scale. To estimate absolute quantitative information using these relative abundance measurements requires additional information such as heavy-labeled references of known concentration. Multiple methods have been using different references and strategies; some are easily available whereas others require more effort on the users end. Hence, we believe the field might benefit from making some of these methods available under an automated framework, which also facilitates validation of the chosen strategy. We have implemented the most commonly used absolute label-free protein abundance estimation methods for LC-MS/MS modes quantifying on either MS1-, MS2-levels or spectral counts together with validation algorithms to enable automated data analysis and error estimation. Specifically, we used Monte-carlo cross-validation and bootstrapping for model selection and imputation of proteome-wide absolute protein quantity estimation. Our open-source software is written in the statistical programming language R and validated and demonstrated on a synthetic sample.

Maintained by George Rosenberger. Last updated 5 years ago.

1.85 score 14 scripts