Showing 2 of total 2 results (show query)
kharchenkolab
pagoda2:Single Cell Analysis and Differential Expression
Analyzing and interactively exploring large-scale single-cell RNA-seq datasets. 'pagoda2' primarily performs normalization and differential gene expression analysis, with an interactive application for exploring single-cell RNA-seq datasets. It performs basic tasks such as cell size normalization, gene variance normalization, and can be used to identify subpopulations and run differential expression within individual samples. 'pagoda2' was written to rapidly process modern large-scale scRNAseq datasets of approximately 1e6 cells. The companion web application allows users to explore which gene expression patterns form the different subpopulations within your data. The package also serves as the primary method for preprocessing data for conos, <https://github.com/kharchenkolab/conos>. This package interacts with data available through the 'p2data' package, which is available in a 'drat' repository. To access this data package, see the instructions at <https://github.com/kharchenkolab/pagoda2>. The size of the 'p2data' package is approximately 6 MB.
Maintained by Evan Biederstedt. Last updated 1 years ago.
scrna-seqsingle-cellsingle-cell-rna-seqtranscriptomicsopenblascppopenmp
223 stars 8.00 score 282 scriptsbioc
scde:Single Cell Differential Expression
The scde package implements a set of statistical methods for analyzing single-cell RNA-seq data. scde fits individual error models for single-cell RNA-seq measurements. These models can then be used for assessment of differential expression between groups of cells, as well as other types of analysis. The scde package also contains the pagoda framework which applies pathway and gene set overdispersion analysis to identify and characterize putative cell subpopulations based on transcriptional signatures. The overall approach to the differential expression analysis is detailed in the following publication: "Bayesian approach to single-cell differential expression analysis" (Kharchenko PV, Silberstein L, Scadden DT, Nature Methods, doi: 10.1038/nmeth.2967). The overall approach to subpopulation identification and characterization is detailed in the following pre-print: "Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis" (Fan J, Salathia N, Liu R, Kaeser G, Yung Y, Herman J, Kaper F, Fan JB, Zhang K, Chun J, and Kharchenko PV, Nature Methods, doi:10.1038/nmeth.3734).
Maintained by Evan Biederstedt. Last updated 5 months ago.
immunooncologyrnaseqstatisticalmethoddifferentialexpressionbayesiantranscriptionsoftwareanalysisbioinformaticsheterogenityngssingle-celltranscriptomicsopenblascppopenmp
173 stars 7.53 score 141 scripts