Showing 3 of total 3 results (show query)
dmphillippo
multinma:Bayesian Network Meta-Analysis of Individual and Aggregate Data
Network meta-analysis and network meta-regression models for aggregate data, individual patient data, and mixtures of both individual and aggregate data using multilevel network meta-regression as described by Phillippo et al. (2020) <doi:10.1111/rssa.12579>. Models are estimated in a Bayesian framework using 'Stan'.
Maintained by David M. Phillippo. Last updated 3 days ago.
35 stars 9.34 score 163 scriptsf-rousset
spaMM:Mixed-Effect Models, with or without Spatial Random Effects
Inference based on models with or without spatially-correlated random effects, multivariate responses, or non-Gaussian random effects (e.g., Beta). Variation in residual variance (heteroscedasticity) can itself be represented by a mixed-effect model. Both classical geostatistical models (Rousset and Ferdy 2014 <doi:10.1111/ecog.00566>), and Markov random field models on irregular grids (as considered in the 'INLA' package, <https://www.r-inla.org>), can be fitted, with distinct computational procedures exploiting the sparse matrix representations for the latter case and other autoregressive models. Laplace approximations are used for likelihood or restricted likelihood. Penalized quasi-likelihood and other variants discussed in the h-likelihood literature (Lee and Nelder 2001 <doi:10.1093/biomet/88.4.987>) are also implemented.
Maintained by François Rousset. Last updated 10 months ago.
4.94 score 208 scripts 5 dependentsinsileco
formbuildr:Form builder
Build forms with the command line interface.
Maintained by Kevin Cazelles. Last updated 4 years ago.
2.70 score