Showing 4 of total 4 results (show query)
dtkaplan
LSTbook:Data and Software for "Lessons in Statistical Thinking"
"Lessons in Statistical Thinking" D.T. Kaplan (2014) <https://dtkaplan.github.io/Lessons-in-statistical-thinking/> is a textbook for a first or second course in statistics that embraces data wrangling, causal reasoning, modeling, statistical adjustment, and simulation. 'LSTbook' supports the student-centered, tidy, pipeline-oriented computing style featured in the book.
Maintained by Daniel Kaplan. Last updated 7 days ago.
4 stars 6.32 score 27 scriptsbioc
structToolbox:Data processing & analysis tools for Metabolomics and other omics
An extensive set of data (pre-)processing and analysis methods and tools for metabolomics and other omics, with a strong emphasis on statistics and machine learning. This toolbox allows the user to build extensive and standardised workflows for data analysis. The methods and tools have been implemented using class-based templates provided by the struct (Statistics in R Using Class-based Templates) package. The toolbox includes pre-processing methods (e.g. signal drift and batch correction, normalisation, missing value imputation and scaling), univariate (e.g. ttest, various forms of ANOVA, Kruskal–Wallis test and more) and multivariate statistical methods (e.g. PCA and PLS, including cross-validation and permutation testing) as well as machine learning methods (e.g. Support Vector Machines). The STATistics Ontology (STATO) has been integrated and implemented to provide standardised definitions for the different methods, inputs and outputs.
Maintained by Gavin Rhys Lloyd. Last updated 1 months ago.
workflowstepmetabolomicsbioconductor-packagedimslc-msmachine-learningmultivariate-analysisstatisticsunivariate
10 stars 6.26 score 12 scriptsbioc
struct:Statistics in R Using Class-based Templates
Defines and includes a set of class-based templates for developing and implementing data processing and analysis workflows, with a strong emphasis on statistics and machine learning. The templates can be used and where needed extended to 'wrap' tools and methods from other packages into a common standardised structure to allow for effective and fast integration. Model objects can be combined into sequences, and sequences nested in iterators using overloaded operators to simplify and improve readability of the code. Ontology lookup has been integrated and implemented to provide standardised definitions for methods, inputs and outputs wrapped using the class-based templates.
Maintained by Gavin Rhys Lloyd. Last updated 5 months ago.
5.91 score 76 scripts 3 dependentsjamesliley
OptHoldoutSize:Estimation of Optimal Size for a Holdout Set for Updating a Predictive Score
Predictive scores must be updated with care, because actions taken on the basis of existing risk scores causes bias in risk estimates from the updated score. A holdout set is a straightforward way to manage this problem: a proportion of the population is 'held-out' from computation of the previous risk score. This package provides tools to estimate a size for this holdout set and associated errors. Comprehensive vignettes are included. Please see: Haidar-Wehbe S, Emerson SR, Aslett LJM, Liley J (2022) <arXiv:2202.06374> for details of methods.
Maintained by James Liley. Last updated 3 years ago.
3.18 score 10 scripts