Showing 3 of total 3 results (show query)
adibender
pammtools:Piece-Wise Exponential Additive Mixed Modeling Tools for Survival Analysis
The Piece-wise exponential (Additive Mixed) Model (PAMM; Bender and others (2018) <doi: 10.1177/1471082X17748083>) is a powerful model class for the analysis of survival (or time-to-event) data, based on Generalized Additive (Mixed) Models (GA(M)Ms). It offers intuitive specification and robust estimation of complex survival models with stratified baseline hazards, random effects, time-varying effects, time-dependent covariates and cumulative effects (Bender and others (2019)), as well as support for left-truncated data as well as competing risks, recurrent events and multi-state settings. pammtools provides tidy workflow for survival analysis with PAMMs, including data simulation, transformation and other functions for data preprocessing and model post-processing as well as visualization.
Maintained by Andreas Bender. Last updated 10 days ago.
additive-modelspammpammtoolspiece-wise-exponentialsurvival-analysis
48 stars 9.32 score 310 scripts 8 dependentsgiabaio
survHE:Survival Analysis in Health Economic Evaluation
Contains a suite of functions for survival analysis in health economics. These can be used to run survival models under a frequentist (based on maximum likelihood) or a Bayesian approach (both based on Integrated Nested Laplace Approximation or Hamiltonian Monte Carlo). To run the Bayesian models, the user needs to install additional modules (packages), i.e. 'survHEinla' and 'survHEhmc'. These can be installed using 'remotes::install_github' from their GitHub repositories: (<https://github.com/giabaio/survHEhmc> and <https://github.com/giabaio/survHEinla/> respectively). 'survHEinla' is based on the package INLA, which is available for download at <https://inla.r-inla-download.org/R/stable/>. The user can specify a set of parametric models using a common notation and select the preferred mode of inference. The results can also be post-processed to produce probabilistic sensitivity analysis and can be used to export the output to an Excel file (e.g. for a Markov model, as often done by modellers and practitioners). <doi:10.18637/jss.v095.i14>.
Maintained by Gianluca Baio. Last updated 27 days ago.
frequentisthamiltonian-monte-carlohealth-economic-evaluationinlaplotting-survival-curvesrstansurvival-analysissurvival-modelsuncertaintyopenjdk
42 stars 6.88 score 2 dependentsmarcusrowcliffe
sbd:Size Biased Distributions
Fitting and plotting parametric or non-parametric size-biased non-negative distributions, with optional covariates if parametric. Rowcliffe, M. et al. (2016) <doi:10.1002/rse2.17>.
Maintained by Marcus Rowcliffe. Last updated 9 months ago.
3.30 score