Showing 5 of total 5 results (show query)
harrelfe
Hmisc:Harrell Miscellaneous
Contains many functions useful for data analysis, high-level graphics, utility operations, functions for computing sample size and power, simulation, importing and annotating datasets, imputing missing values, advanced table making, variable clustering, character string manipulation, conversion of R objects to LaTeX and html code, recoding variables, caching, simplified parallel computing, encrypting and decrypting data using a safe workflow, general moving window statistical estimation, and assistance in interpreting principal component analysis.
Maintained by Frank E Harrell Jr. Last updated 5 days ago.
209 stars 17.64 score 17k scripts 750 dependentsgoranbrostrom
eha:Event History Analysis
Parametric proportional hazards fitting with left truncation and right censoring for common families of distributions, piecewise constant hazards, and discrete models. Parametric accelerated failure time models for left truncated and right censored data. Proportional hazards models for tabular and register data. Sampling of risk sets in Cox regression, selections in the Lexis diagram, bootstrapping. Broström (2022) <doi:10.1201/9780429503764>.
Maintained by Göran Broström. Last updated 10 months ago.
7 stars 9.76 score 308 scripts 10 dependentsimbs-hl
survivalsvm:Survival Support Vector Analysis
Performs support vectors analysis for data sets with survival outcome. Three approaches are available in the package: The regression approach takes censoring into account when formulating the inequality constraints of the support vector problem. In the ranking approach, the inequality constraints set the objective to maximize the concordance index for comparable pairs of observations. The hybrid approach combines the regression and ranking constraints in the same model.
Maintained by Cesaire Fouodo. Last updated 7 years ago.
16 stars 5.17 score 61 scripts 1 dependentsyikeshu0611
cutoff:Seek the Significant Cutoff Value
Seek the significant cutoff value for a continuous variable, which will be transformed into a classification, for linear regression, logistic regression, logrank analysis and cox regression. First of all, all combinations will be gotten by combn() function. Then n.per argument, abbreviated of total number percentage, will be used to remove the combination of smaller data group. In logistic, Cox regression and logrank analysis, we will also use p.per argument, patient percentage, to filter the lower proportion of patients in each group. Finally, p value in regression results will be used to get the significant combinations and output relevant parameters. In this package, there is no limit to the number of cutoff points, which can be 1, 2, 3 or more. Missing values will be deleted by na.omit() function before analysis.
Maintained by Jing Zhang. Last updated 5 years ago.
1 stars 3.67 score 31 scripts 1 dependents