Showing 2 of total 2 results (show query)
dmphillippo
multinma:Bayesian Network Meta-Analysis of Individual and Aggregate Data
Network meta-analysis and network meta-regression models for aggregate data, individual patient data, and mixtures of both individual and aggregate data using multilevel network meta-regression as described by Phillippo et al. (2020) <doi:10.1111/rssa.12579>. Models are estimated in a Bayesian framework using 'Stan'.
Maintained by David M. Phillippo. Last updated 3 days ago.
35 stars 9.34 score 163 scriptsjtimonen
lgpr:Longitudinal Gaussian Process Regression
Interpretable nonparametric modeling of longitudinal data using additive Gaussian process regression. Contains functionality for inferring covariate effects and assessing covariate relevances. Models are specified using a convenient formula syntax, and can include shared, group-specific, non-stationary, heterogeneous and temporally uncertain effects. Bayesian inference for model parameters is performed using 'Stan'. The modeling approach and methods are described in detail in Timonen et al. (2021) <doi:10.1093/bioinformatics/btab021>.
Maintained by Juho Timonen. Last updated 7 months ago.
bayesian-inferencegaussian-processeslongitudinal-datastancpp
25 stars 5.94 score 69 scripts