PNAR:Poisson Network Autoregressive Models
Quasi likelihood-based methods for estimating linear and log-linear Poisson Network Autoregression models with p lags
and covariates. Tools for testing the linearity versus several
non-linear alternatives. Tools for simulation of multivariate
count distributions, from linear and non-linear PNAR models, by
using a specific copula construction. References include:
Armillotta, M. and K. Fokianos (2023). "Nonlinear network
autoregression". Annals of Statistics, 51(6): 2526--2552.
<doi:10.1214/23-AOS2345>. Armillotta, M. and K. Fokianos
(2024). "Count network autoregression". Journal of Time Series
Analysis, 45(4): 584--612. <doi:10.1111/jtsa.12728>.
Armillotta, M., Tsagris, M. and Fokianos, K. (2024). "Inference
for Network Count Time Series with the R Package PNAR". The R
Journal, 15/4: 255--269. <doi:10.32614/RJ-2023-094>.