Showing 3 of total 3 results (show query)
trevorhastie
softImpute:Matrix Completion via Iterative Soft-Thresholded SVD
Iterative methods for matrix completion that use nuclear-norm regularization. There are two main approaches.The one approach uses iterative soft-thresholded svds to impute the missing values. The second approach uses alternating least squares. Both have an 'EM' flavor, in that at each iteration the matrix is completed with the current estimate. For large matrices there is a special sparse-matrix class named "Incomplete" that efficiently handles all computations. The package includes procedures for centering and scaling rows, columns or both, and for computing low-rank SVDs on large sparse centered matrices (i.e. principal components).
Maintained by Trevor Hastie. Last updated 4 years ago.
10 stars 7.47 score 253 scripts 22 dependentsaalfons
robustHD:Robust Methods for High-Dimensional Data
Robust methods for high-dimensional data, in particular linear model selection techniques based on least angle regression and sparse regression. Specifically, the package implements robust least angle regression (Khan, Van Aelst & Zamar, 2007; <doi:10.1198/016214507000000950>), (robust) groupwise least angle regression (Alfons, Croux & Gelper, 2016; <doi:10.1016/j.csda.2015.02.007>), and sparse least trimmed squares regression (Alfons, Croux & Gelper, 2013; <doi:10.1214/12-AOAS575>).
Maintained by Andreas Alfons. Last updated 9 months ago.
10 stars 7.10 score 174 scripts 8 dependentsminnage
ui:Uncertainty Intervals and Sensitivity Analysis for Missing Data
Implements functions to derive uncertainty intervals for (i) regression (linear and probit) parameters when outcome is missing not at random (non-ignorable missingness) introduced in Genbaeck, M., Stanghellini, E., de Luna, X. (2015) <doi:10.1007/s00362-014-0610-x> and Genbaeck, M., Ng, N., Stanghellini, E., de Luna, X. (2018) <doi:10.1007/s10433-017-0448-x>; and (ii) double robust and outcome regression estimators of average causal effects (on the treated) with possibly unobserved confounding introduced in Genbaeck, M., de Luna, X. (2018) <doi:10.1111/biom.13001>.
Maintained by Minna Genbaeck. Last updated 5 years ago.
2.78 score 151 scripts