Showing 2 of total 2 results (show query)
bioc
msqrob2:Robust statistical inference for quantitative LC-MS proteomics
msqrob2 provides a robust linear mixed model framework for assessing differential abundance in MS-based Quantitative proteomics experiments. Our workflows can start from raw peptide intensities or summarised protein expression values. The model parameter estimates can be stabilized by ridge regression, empirical Bayes variance estimation and robust M-estimation. msqrob2's hurde workflow can handle missing data without having to rely on hard-to-verify imputation assumptions, and, outcompetes state-of-the-art methods with and without imputation for both high and low missingness. It builds on QFeature infrastructure for quantitative mass spectrometry data to store the model results together with the raw data and preprocessed data.
Maintained by Lieven Clement. Last updated 1 months ago.
proteomicsmassspectrometrydifferentialexpressionmultiplecomparisonregressionexperimentaldesignsoftwareimmunooncologynormalizationtimecoursepreprocessing
11 stars 6.98 score 83 scriptspchausse
momentfit:Methods of Moments
Several classes for moment-based models are defined. The classes are defined for moment conditions derived from a single equation or a system of equations. The conditions can also be expressed as functions or formulas. Several methods are also offered to facilitate the development of different estimation techniques. The methods that are currently provided are the Generalized method of moments (Hansen 1982; <doi:10.2307/1912775>), for single equations and systems of equation, and the Generalized Empirical Likelihood (Smith 1997; <doi:10.1111/j.0013-0133.1997.174.x>, Kitamura 1997; <doi:10.1214/aos/1069362388>, Newey and Smith 2004; <doi:10.1111/j.1468-0262.2004.00482.x>, and Anatolyev 2005 <doi:10.1111/j.1468-0262.2005.00601.x>).
Maintained by Pierre Chausse. Last updated 1 years ago.
4.80 score 21 scripts 1 dependents