Showing 10 of total 10 results (show query)
strengejacke
ggeffects:Create Tidy Data Frames of Marginal Effects for 'ggplot' from Model Outputs
Compute marginal effects and adjusted predictions from statistical models and returns the result as tidy data frames. These data frames are ready to use with the 'ggplot2'-package. Effects and predictions can be calculated for many different models. Interaction terms, splines and polynomial terms are also supported. The main functions are ggpredict(), ggemmeans() and ggeffect(). There is a generic plot()-method to plot the results using 'ggplot2'.
Maintained by Daniel Lüdecke. Last updated 8 days ago.
estimated-marginal-meanshacktoberfestmarginal-effectsprediction
590 stars 15.58 score 3.6k scripts 7 dependentsbiomodhub
biomod2:Ensemble Platform for Species Distribution Modeling
Functions for species distribution modeling, calibration and evaluation, ensemble of models, ensemble forecasting and visualization. The package permits to run consistently up to 10 single models on a presence/absences (resp presences/pseudo-absences) dataset and to combine them in ensemble models and ensemble projections. Some bench of other evaluation and visualisation tools are also available within the package.
Maintained by Maya Guéguen. Last updated 5 hours ago.
95 stars 13.92 score 536 scripts 8 dependentsmartin-borkovec
ggparty:'ggplot' Visualizations for the 'partykit' Package
Extends 'ggplot2' functionality to the 'partykit' package. 'ggparty' provides the necessary tools to create clearly structured and highly customizable visualizations for tree-objects of the class 'party'.
Maintained by Martin Borkovec. Last updated 6 years ago.
147 stars 9.48 score 156 scripts 7 dependentsemeyers
NeuroDecodeR:Decode Information from Neural Activity
Neural decoding is method of analyzing neural data that uses a pattern classifiers to predict experimental conditions based on neural activity. 'NeuroDecodeR' is a system of objects that makes it easy to run neural decoding analyses. For more information on neural decoding see Meyers & Kreiman (2011) <doi:10.7551/mitpress/8404.003.0024>.
Maintained by Ethan Meyers. Last updated 1 years ago.
12 stars 6.49 score 17 scriptsjacolien
itsadug:Interpreting Time Series and Autocorrelated Data Using GAMMs
GAMM (Generalized Additive Mixed Modeling; Lin & Zhang, 1999) as implemented in the R package 'mgcv' (Wood, S.N., 2006; 2011) is a nonlinear regression analysis which is particularly useful for time course data such as EEG, pupil dilation, gaze data (eye tracking), and articulography recordings, but also for behavioral data such as reaction times and response data. As time course measures are sensitive to autocorrelation problems, GAMMs implements methods to reduce the autocorrelation problems. This package includes functions for the evaluation of GAMM models (e.g., model comparisons, determining regions of significance, inspection of autocorrelational structure in residuals) and interpreting of GAMMs (e.g., visualization of complex interactions, and contrasts).
Maintained by Jacolien van Rij. Last updated 3 years ago.
1 stars 6.45 score 576 scripts 2 dependentsl-ramirez-lopez
resemble:Memory-Based Learning in Spectral Chemometrics
Functions for dissimilarity analysis and memory-based learning (MBL, a.k.a local modeling) in complex spectral data sets. Most of these functions are based on the methods presented in Ramirez-Lopez et al. (2013) <doi:10.1016/j.geoderma.2012.12.014>.
Maintained by Leonardo Ramirez-Lopez. Last updated 2 years ago.
chemoinformaticschemometricsinfrared-spectroscopylazy-learninglocal-regressionmachine-learningmemory-based-learningnirpedometricssoil-spectroscopyspectral-dataspectral-libraryspectroscopyopenblascppopenmp
20 stars 5.91 score 27 scriptsblasbenito
spatialRF:Easy Spatial Modeling with Random Forest
Automatic generation and selection of spatial predictors for spatial regression with Random Forest. Spatial predictors are surrogates of variables driving the spatial structure of a response variable. The package offers two methods to generate spatial predictors from a distance matrix among training cases: 1) Moran's Eigenvector Maps (MEMs; Dray, Legendre, and Peres-Neto 2006 <DOI:10.1016/j.ecolmodel.2006.02.015>): computed as the eigenvectors of a weighted matrix of distances; 2) RFsp (Hengl et al. <DOI:10.7717/peerj.5518>): columns of the distance matrix used as spatial predictors. Spatial predictors help minimize the spatial autocorrelation of the model residuals and facilitate an honest assessment of the importance scores of the non-spatial predictors. Additionally, functions to reduce multicollinearity, identify relevant variable interactions, tune random forest hyperparameters, assess model transferability via spatial cross-validation, and explore model results via partial dependence curves and interaction surfaces are included in the package. The modelling functions are built around the highly efficient 'ranger' package (Wright and Ziegler 2017 <DOI:10.18637/jss.v077.i01>).
Maintained by Blas M. Benito. Last updated 3 years ago.
random-forestspatial-analysisspatial-regression
114 stars 5.45 score 49 scriptskwb-r
kwb.heatsine:R Package for Calculating Hydraulic Travel Times Based on Sinus Temperature Fitting
Requires daily temperature times series in a surface water body and one groundwater observation well (in case of an production well this data needs to be cleaned in order to reduce temperature fluctuations due to the operation scheme!).
Maintained by Michael Rustler. Last updated 4 years ago.
3.65 score 4 scripts 1 dependentscobrbra
ICBioMark:Data-Driven Design of Targeted Gene Panels for Estimating Immunotherapy Biomarkers
Implementation of the methodology proposed in 'Data-driven design of targeted gene panels for estimating immunotherapy biomarkers', Bradley and Cannings (2021) <arXiv:2102.04296>. This package allows the user to fit generative models of mutation from an annotated mutation dataset, and then further to produce tunable linear estimators of exome-wide biomarkers. It also contains functions to simulate mutation annotated format (MAF) data, as well as to analyse the output and performance of models.
Maintained by Jacob R. Bradley. Last updated 2 years ago.
2.70 score 2 scripts