Showing 2 of total 2 results (show query)
darkeyes
mFLICA:Leadership-Inference Framework for Multivariate Time Series
A leadership-inference framework for multivariate time series. The framework for multiple-faction-leadership inference from coordinated activities or 'mFLICA' uses a notion of a leader as an individual who initiates collective patterns that everyone in a group follows. Given a set of time series of individual activities, our goal is to identify periods of coordinated activity, find factions of coordination if more than one exist, as well as identify leaders of each faction. For each time step, the framework infers following relations between individual time series, then identifying a leader of each faction whom many individuals follow but it follows no one. A faction is defined as a group of individuals that everyone follows the same leader. 'mFLICA' reports following relations, leaders of factions, and members of each faction for each time step. Please see Chainarong Amornbunchornvej and Tanya Berger-Wolf (2018) <doi:10.1137/1.9781611975321.62> for methodology and Chainarong Amornbunchornvej (2021) <doi:10.1016/j.softx.2021.100781> for software when referring to this package in publications.
Maintained by Chainarong Amornbunchornvej. Last updated 10 months ago.
coordinationdata-scienceleadershiptime-series
5 stars 4.54 score 14 scriptsdarkeyes
EDOIF:Empirical Distribution Ordering Inference Framework (EDOIF)
A non-parametric framework based on estimation statistics principle. Its main purpose is to infer orders of empirical distributions from different categories based on a probability of finding a value in one distribution that is greater than an expectation of another distribution. Given a set of ordered-pair of real-category values the framework is capable of 1) inferring orders of domination of categories and representing orders in the form of a graph; 2) estimating magnitude of difference between a pair of categories in forms of mean-difference confidence intervals; and 3) visualizing domination orders and magnitudes of difference of categories. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2020) <doi:10.1016/j.heliyon.2020.e05435>.
Maintained by Chainarong Amornbunchornvej. Last updated 4 years ago.
bootstrapping-statisticsdata-scienceestimation-statisticsnonparametric-framework
1 stars 3.70 score 4 scripts