Showing 5 of total 5 results (show query)
tidyverse
ggplot2:Create Elegant Data Visualisations Using the Grammar of Graphics
A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
Maintained by Thomas Lin Pedersen. Last updated 5 days ago.
data-visualisationvisualisation
6.6k stars 25.10 score 645k scripts 7.6k dependentsnlmixr2
rxode2:Facilities for Simulating from ODE-Based Models
Facilities for running simulations from ordinary differential equation ('ODE') models, such as pharmacometrics and other compartmental models. A compilation manager translates the ODE model into C, compiles it, and dynamically loads the object code into R for improved computational efficiency. An event table object facilitates the specification of complex dosing regimens (optional) and sampling schedules. NB: The use of this package requires both C and Fortran compilers, for details on their use with R please see Section 6.3, Appendix A, and Appendix D in the "R Administration and Installation" manual. Also the code is mostly released under GPL. The 'VODE' and 'LSODA' are in the public domain. The information is available in the inst/COPYRIGHTS.
Maintained by Matthew L. Fidler. Last updated 1 months ago.
40 stars 11.24 score 220 scripts 13 dependentsanimint
animint2:Animated Interactive Grammar of Graphics
Functions are provided for defining animated, interactive data visualizations in R code, and rendering on a web page. The 2018 Journal of Computational and Graphical Statistics paper, <doi:10.1080/10618600.2018.1513367> describes the concepts implemented.
Maintained by Toby Hocking. Last updated 1 months ago.
64 stars 8.84 score 173 scriptsddsjoberg
dcurves:Decision Curve Analysis for Model Evaluation
Diagnostic and prognostic models are typically evaluated with measures of accuracy that do not address clinical consequences. Decision-analytic techniques allow assessment of clinical outcomes, but often require collection of additional information may be cumbersome to apply to models that yield a continuous result. Decision curve analysis is a method for evaluating and comparing prediction models that incorporates clinical consequences, requires only the data set on which the models are tested, and can be applied to models that have either continuous or dichotomous results. See the following references for details on the methods: Vickers (2006) <doi:10.1177/0272989X06295361>, Vickers (2008) <doi:10.1186/1472-6947-8-53>, and Pfeiffer (2020) <doi:10.1002/bimj.201800240>.
Maintained by Daniel D. Sjoberg. Last updated 8 months ago.
40 stars 6.77 score 95 scriptsjosiahparry
rsgeo:An Interface to Rust's 'geo' Library
An R interface to the GeoRust crates 'geo' and 'geo-types' providing access to geometry primitives and algorithms.
Maintained by Josiah Parry. Last updated 8 months ago.
47 stars 3.96 score 13 scripts