Showing 2 of total 2 results (show query)
kkholst
lava:Latent Variable Models
A general implementation of Structural Equation Models with latent variables (MLE, 2SLS, and composite likelihood estimators) with both continuous, censored, and ordinal outcomes (Holst and Budtz-Joergensen (2013) <doi:10.1007/s00180-012-0344-y>). Mixture latent variable models and non-linear latent variable models (Holst and Budtz-Joergensen (2020) <doi:10.1093/biostatistics/kxy082>). The package also provides methods for graph exploration (d-separation, back-door criterion), simulation of general non-linear latent variable models, and estimation of influence functions for a broad range of statistical models.
Maintained by Klaus K. Holst. Last updated 3 months ago.
latent-variable-modelssimulationstatisticsstructural-equation-models
33 stars 12.87 score 610 scripts 478 dependentsrmojab63
ldt:Automated Uncertainty Analysis
Methods and tools for model selection and multi-model inference (Burnham and Anderson (2002) <doi:10.1007/b97636>, among others). 'SUR' (for parameter estimation), 'logit'/'probit' (for binary classification), and 'VARMA' (for time-series forecasting) are implemented. Evaluations are both in-sample and out-of-sample. It is designed to be efficient in terms of CPU usage and memory consumption.
Maintained by Ramin Mojab. Last updated 9 months ago.
2.48 score 7 scripts