Showing 1 of total 1 results (show query)
sebkrantz
dfms:Dynamic Factor Models
Efficient estimation of Dynamic Factor Models using the Expectation Maximization (EM) algorithm or Two-Step (2S) estimation, supporting datasets with missing data. The estimation options follow advances in the econometric literature: either running the Kalman Filter and Smoother once with initial values from PCA - 2S estimation as in Doz, Giannone and Reichlin (2011) <doi:10.1016/j.jeconom.2011.02.012> - or via iterated Kalman Filtering and Smoothing until EM convergence - following Doz, Giannone and Reichlin (2012) <doi:10.1162/REST_a_00225> - or using the adapted EM algorithm of Banbura and Modugno (2014) <doi:10.1002/jae.2306>, allowing arbitrary patterns of missing data. The implementation makes heavy use of the 'Armadillo' 'C++' library and the 'collapse' package, providing for particularly speedy estimation. A comprehensive set of methods supports interpretation and visualization of the model as well as forecasting. Information criteria to choose the number of factors are also provided - following Bai and Ng (2002) <doi:10.1111/1468-0262.00273>.
Maintained by Sebastian Krantz. Last updated 13 days ago.
dynamic-factor-modelstime-seriesopenblascpp
32 stars 5.76 score 12 scripts