Showing 2 of total 2 results (show query)
covaruber
sommer:Solving Mixed Model Equations in R
Structural multivariate-univariate linear mixed model solver for estimation of multiple random effects with unknown variance-covariance structures (e.g., heterogeneous and unstructured) and known covariance among levels of random effects (e.g., pedigree and genomic relationship matrices) (Covarrubias-Pazaran, 2016 <doi:10.1371/journal.pone.0156744>; Maier et al., 2015 <doi:10.1016/j.ajhg.2014.12.006>; Jensen et al., 1997). REML estimates can be obtained using the Direct-Inversion Newton-Raphson and Direct-Inversion Average Information algorithms for the problems r x r (r being the number of records) or using the Henderson-based average information algorithm for the problem c x c (c being the number of coefficients to estimate). Spatial models can also be fitted using the two-dimensional spline functionality available.
Maintained by Giovanny Covarrubias-Pazaran. Last updated 3 days ago.
average-informationmixed-modelsrcpparmadilloopenblascppopenmp
44 stars 12.63 score 300 scripts 10 dependentsshabbychef
SharpeR:Statistical Significance of the Sharpe Ratio
A collection of tools for analyzing significance of assets, funds, and trading strategies, based on the Sharpe ratio and overfit of the same. Provides density, distribution, quantile and random generation of the Sharpe ratio distribution based on normal returns, as well as the optimal Sharpe ratio over multiple assets. Computes confidence intervals on the Sharpe and provides a test of equality of Sharpe ratios based on the Delta method. The statistical foundations of the Sharpe can be found in the author's Short Sharpe Course <doi:10.2139/ssrn.3036276>.
Maintained by Steven E. Pav. Last updated 3 months ago.
19 stars 6.18 score 53 scripts