Showing 2 of total 2 results (show query)
kkholst
mets:Analysis of Multivariate Event Times
Implementation of various statistical models for multivariate event history data <doi:10.1007/s10985-013-9244-x>. Including multivariate cumulative incidence models <doi:10.1002/sim.6016>, and bivariate random effects probit models (Liability models) <doi:10.1016/j.csda.2015.01.014>. Modern methods for survival analysis, including regression modelling (Cox, Fine-Gray, Ghosh-Lin, Binomial regression) with fast computation of influence functions.
Maintained by Klaus K. Holst. Last updated 18 hours ago.
multivariate-time-to-eventsurvival-analysistime-to-eventfortranopenblascpp
14 stars 13.45 score 236 scripts 42 dependentscran
qrnn:Quantile Regression Neural Network
Fit quantile regression neural network models with optional left censoring, partial monotonicity constraints, generalized additive model constraints, and the ability to fit multiple non-crossing quantile functions following Cannon (2011) <doi:10.1016/j.cageo.2010.07.005> and Cannon (2018) <doi:10.1007/s00477-018-1573-6>.
Maintained by Alex J. Cannon. Last updated 1 years ago.
8 stars 3.08 score 1 dependents