Showing 4 of total 4 results (show query)
aalfons
robustHD:Robust Methods for High-Dimensional Data
Robust methods for high-dimensional data, in particular linear model selection techniques based on least angle regression and sparse regression. Specifically, the package implements robust least angle regression (Khan, Van Aelst & Zamar, 2007; <doi:10.1198/016214507000000950>), (robust) groupwise least angle regression (Alfons, Croux & Gelper, 2016; <doi:10.1016/j.csda.2015.02.007>), and sparse least trimmed squares regression (Alfons, Croux & Gelper, 2013; <doi:10.1214/12-AOAS575>).
Maintained by Andreas Alfons. Last updated 9 months ago.
10 stars 7.10 score 174 scripts 8 dependentssaviviro
uGMAR:Estimate Univariate Gaussian and Student's t Mixture Autoregressive Models
Maximum likelihood estimation of univariate Gaussian Mixture Autoregressive (GMAR), Student's t Mixture Autoregressive (StMAR), and Gaussian and Student's t Mixture Autoregressive (G-StMAR) models, quantile residual tests, graphical diagnostics, forecast and simulate from GMAR, StMAR and G-StMAR processes. Leena Kalliovirta, Mika Meitz, Pentti Saikkonen (2015) <doi:10.1111/jtsa.12108>, Mika Meitz, Daniel Preve, Pentti Saikkonen (2023) <doi:10.1080/03610926.2021.1916531>, Savi Virolainen (2022) <doi:10.1515/snde-2020-0060>.
Maintained by Savi Virolainen. Last updated 3 months ago.
1 stars 4.88 score 51 scriptscran
biclust:BiCluster Algorithms
The main function biclust() provides several algorithms to find biclusters in two-dimensional data: Cheng and Church (2000, ISBN:1-57735-115-0), spectral (2003) <doi:10.1101/gr.648603>, plaid model (2005) <doi:10.1016/j.csda.2004.02.003>, xmotifs (2003) <doi:10.1142/9789812776303_0008> and bimax (2006) <doi:10.1093/bioinformatics/btl060>. In addition, the package provides methods for data preprocessing (normalization and discretisation), visualisation, and validation of bicluster solutions.
Maintained by Sebastian Kaiser. Last updated 2 years ago.
3 stars 4.74 score 16 dependentskleinbub
rMEA:Synchrony in Motion Energy Analysis (MEA) Time-Series
A suite of tools useful to read, visualize and export bivariate motion energy time-series. Lagged synchrony between subjects can be analyzed through windowed cross-correlation. Surrogate data generation allows an estimation of pseudosynchrony that helps to estimate the effect size of the observed synchronization. Kleinbub, J. R., & Ramseyer, F. T. (2020). rMEA: An R package to assess nonverbal synchronization in motion energy analysis time-series. Psychotherapy research, 1-14. <doi:10.1080/10503307.2020.1844334>.
Maintained by Johann R. Kleinbub. Last updated 4 months ago.
15 stars 4.73 score 24 scripts