Showing 5 of total 5 results (show query)
lbelzile
mev:Modelling of Extreme Values
Various tools for the analysis of univariate, multivariate and functional extremes. Exact simulation from max-stable processes [Dombry, Engelke and Oesting (2016) <doi:10.1093/biomet/asw008>, R-Pareto processes for various parametric models, including Brown-Resnick (Wadsworth and Tawn, 2014, <doi:10.1093/biomet/ast042>) and Extremal Student (Thibaud and Opitz, 2015, <doi:10.1093/biomet/asv045>). Threshold selection methods, including Wadsworth (2016) <doi:10.1080/00401706.2014.998345>, and Northrop and Coleman (2014) <doi:10.1007/s10687-014-0183-z>. Multivariate extreme diagnostics. Estimation and likelihoods for univariate extremes, e.g., Coles (2001) <doi:10.1007/978-1-4471-3675-0>.
Maintained by Leo Belzile. Last updated 5 months ago.
extreme-value-statisticslikelihood-functionsmax-stablesimulationthreshold-selectionopenblascppopenmp
14 stars 8.21 score 94 scripts 4 dependentspaulnorthrop
revdbayes:Ratio-of-Uniforms Sampling for Bayesian Extreme Value Analysis
Provides functions for the Bayesian analysis of extreme value models. The 'rust' package <https://cran.r-project.org/package=rust> is used to simulate a random sample from the required posterior distribution. The functionality of 'revdbayes' is similar to the 'evdbayes' package <https://cran.r-project.org/package=evdbayes>, which uses Markov Chain Monte Carlo ('MCMC') methods for posterior simulation. In addition, there are functions for making inferences about the extremal index, using the models for threshold inter-exceedance times of Suveges and Davison (2010) <doi:10.1214/09-AOAS292> and Holesovsky and Fusek (2020) <doi:10.1007/s10687-020-00374-3>. Also provided are d,p,q,r functions for the Generalised Extreme Value ('GEV') and Generalised Pareto ('GP') distributions that deal appropriately with cases where the shape parameter is very close to zero.
Maintained by Paul J. Northrop. Last updated 7 months ago.
analysisbayesianextremeextreme-value-statisticsextremesgeneralized-pareto-distributiongevinferencenhpppoint-processposteriorpredictivercppvalueopenblascpp
4 stars 7.41 score 58 scripts 4 dependentsmingdeyu
dgpsi:Interface to 'dgpsi' for Deep and Linked Gaussian Process Emulations
Interface to the 'python' package 'dgpsi' for Gaussian process, deep Gaussian process, and linked deep Gaussian process emulations of computer models and networks using stochastic imputation (SI). The implementations follow Ming & Guillas (2021) <doi:10.1137/20M1323771> and Ming, Williamson, & Guillas (2023) <doi:10.1080/00401706.2022.2124311> and Ming & Williamson (2023) <doi:10.48550/arXiv.2306.01212>. To get started with the package, see <https://mingdeyu.github.io/dgpsi-R/>.
Maintained by Deyu Ming. Last updated 5 days ago.
deep-gaussian-processesemulationgaussian-processessurrogate-models
6.03 score 76 scriptstpetzoldt
FAdist:Distributions that are Sometimes Used in Hydrology
Probability distributions that are sometimes useful in hydrology.
Maintained by Thomas Petzoldt. Last updated 3 years ago.
4 stars 4.49 score 51 scripts 1 dependentscran
gp:Maximum Likelihood Estimation of the Generalized Poisson Distribution
Functions to estimate the parameters of the generalized Poisson distribution with or without covariates using maximum likelihood. The references include Nikoloulopoulos A.K. & Karlis D. (2008). "On modeling count data: a comparison of some well-known discrete distributions". Journal of Statistical Computation and Simulation, 78(3): 437--457, <doi:10.1080/10629360601010760> and Consul P.C. & Famoye F. (1992). "Generalized Poisson regression model". Communications in Statistics - Theory and Methods, 21(1): 89--109, <doi:10.1080/03610929208830766>.
Maintained by Michail Tsagris. Last updated 1 years ago.
1.78 score 2 dependents