Showing 4 of total 4 results (show query)
sebkrantz
collapse:Advanced and Fast Data Transformation
A C/C++ based package for advanced data transformation and statistical computing in R that is extremely fast, class-agnostic, robust and programmer friendly. Core functionality includes a rich set of S3 generic grouped and weighted statistical functions for vectors, matrices and data frames, which provide efficient low-level vectorizations, OpenMP multithreading, and skip missing values by default. These are integrated with fast grouping and ordering algorithms (also callable from C), and efficient data manipulation functions. The package also provides a flexible and rigorous approach to time series and panel data in R. It further includes fast functions for common statistical procedures, detailed (grouped, weighted) summary statistics, powerful tools to work with nested data, fast data object conversions, functions for memory efficient R programming, and helpers to effectively deal with variable labels, attributes, and missing data. It is well integrated with base R classes, 'dplyr'/'tibble', 'data.table', 'sf', 'units', 'plm' (panel-series and data frames), and 'xts'/'zoo'.
Maintained by Sebastian Krantz. Last updated 8 days ago.
data-aggregationdata-analysisdata-manipulationdata-processingdata-sciencedata-transformationeconometricshigh-performancepanel-datascientific-computingstatisticstime-seriesweightedweightscppopenmp
672 stars 16.68 score 708 scripts 99 dependentsberndbischl
BBmisc:Miscellaneous Helper Functions for B. Bischl
Miscellaneous helper functions for and from B. Bischl and some other guys, mainly for package development.
Maintained by Bernd Bischl. Last updated 2 years ago.
20 stars 10.65 score 980 scripts 68 dependentsopenpharma
crmPack:Object-Oriented Implementation of CRM Designs
Implements a wide range of model-based dose escalation designs, ranging from classical and modern continual reassessment methods (CRMs) based on dose-limiting toxicity endpoints to dual-endpoint designs taking into account a biomarker/efficacy outcome. The focus is on Bayesian inference, making it very easy to setup a new design with its own JAGS code. However, it is also possible to implement 3+3 designs for comparison or models with non-Bayesian estimation. The whole package is written in a modular form in the S4 class system, making it very flexible for adaptation to new models, escalation or stopping rules. Further details are presented in Sabanes Bove et al. (2019) <doi:10.18637/jss.v089.i10>.
Maintained by Daniel Sabanes Bove. Last updated 3 months ago.
21 stars 7.76 score 208 scriptsips-lmu
emuR:Main Package of the EMU Speech Database Management System
Provide the EMU Speech Database Management System (EMU-SDMS) with database management, data extraction, data preparation and data visualization facilities. See <https://ips-lmu.github.io/The-EMU-SDMS-Manual/> for more details.
Maintained by Markus Jochim. Last updated 1 years ago.
24 stars 6.89 score 135 scripts 1 dependents