robCompositions:Compositional Data Analysis
Methods for analysis of compositional data including robust methods (<doi:10.1007/978-3-319-96422-5>), imputation of
missing values (<doi:10.1016/j.csda.2009.11.023>), methods to
replace rounded zeros (<doi:10.1080/02664763.2017.1410524>,
<doi:10.1016/j.chemolab.2016.04.011>,
<doi:10.1016/j.csda.2012.02.012>), count zeros
(<doi:10.1177/1471082X14535524>), methods to deal with
essential zeros (<doi:10.1080/02664763.2016.1182135>), (robust)
outlier detection for compositional data, (robust) principal
component analysis for compositional data, (robust) factor
analysis for compositional data, (robust) discriminant analysis
for compositional data (Fisher rule), robust regression with
compositional predictors, functional data analysis
(<doi:10.1016/j.csda.2015.07.007>) and p-splines
(<doi:10.1016/j.csda.2015.07.007>), contingency
(<doi:10.1080/03610926.2013.824980>) and compositional tables
(<doi:10.1111/sjos.12326>, <doi:10.1111/sjos.12223>,
<doi:10.1080/02664763.2013.856871>) and (robust)
Anderson-Darling normality tests for compositional data as well
as popular log-ratio transformations (addLR, cenLR, isomLR, and
their inverse transformations). In addition, visualisation and
diagnostic tools are implemented as well as high and low-level
plot functions for the ternary diagram.