Showing 2 of total 2 results (show query)
dmurdoch
rgl:3D Visualization Using OpenGL
Provides medium to high level functions for 3D interactive graphics, including functions modelled on base graphics (plot3d(), etc.) as well as functions for constructing representations of geometric objects (cube3d(), etc.). Output may be on screen using OpenGL, or to various standard 3D file formats including WebGL, PLY, OBJ, STL as well as 2D image formats, including PNG, Postscript, SVG, PGF.
Maintained by Duncan Murdoch. Last updated 2 days ago.
graphicsopenglrglwebgllibglulibglvndlibpnglibx11freetypecpp
91 stars 17.40 score 7.3k scripts 303 dependentsnimble-dev
nimble:MCMC, Particle Filtering, and Programmable Hierarchical Modeling
A system for writing hierarchical statistical models largely compatible with 'BUGS' and 'JAGS', writing nimbleFunctions to operate models and do basic R-style math, and compiling both models and nimbleFunctions via custom-generated C++. 'NIMBLE' includes default methods for MCMC, Laplace Approximation, Monte Carlo Expectation Maximization, and some other tools. The nimbleFunction system makes it easy to do things like implement new MCMC samplers from R, customize the assignment of samplers to different parts of a model from R, and compile the new samplers automatically via C++ alongside the samplers 'NIMBLE' provides. 'NIMBLE' extends the 'BUGS'/'JAGS' language by making it extensible: New distributions and functions can be added, including as calls to external compiled code. Although most people think of MCMC as the main goal of the 'BUGS'/'JAGS' language for writing models, one can use 'NIMBLE' for writing arbitrary other kinds of model-generic algorithms as well. A full User Manual is available at <https://r-nimble.org>.
Maintained by Christopher Paciorek. Last updated 18 days ago.
bayesian-inferencebayesian-methodshierarchical-modelsmcmcprobabilistic-programmingopenblascpp
169 stars 12.97 score 2.6k scripts 19 dependents