Showing 4 of total 4 results (show query)
philchalmers
SimDesign:Structure for Organizing Monte Carlo Simulation Designs
Provides tools to safely and efficiently organize and execute Monte Carlo simulation experiments in R. The package controls the structure and back-end of Monte Carlo simulation experiments by utilizing a generate-analyse-summarise workflow. The workflow safeguards against common simulation coding issues, such as automatically re-simulating non-convergent results, prevents inadvertently overwriting simulation files, catches error and warning messages during execution, implicitly supports parallel processing with high-quality random number generation, and provides tools for managing high-performance computing (HPC) array jobs submitted to schedulers such as SLURM. For a pedagogical introduction to the package see Sigal and Chalmers (2016) <doi:10.1080/10691898.2016.1246953>. For a more in-depth overview of the package and its design philosophy see Chalmers and Adkins (2020) <doi:10.20982/tqmp.16.4.p248>.
Maintained by Phil Chalmers. Last updated 2 days ago.
monte-carlo-simulationsimulationsimulation-framework
62 stars 13.41 score 253 scripts 47 dependentsmayamathur
EValue:Sensitivity Analyses for Unmeasured Confounding and Other Biases in Observational Studies and Meta-Analyses
Conducts sensitivity analyses for unmeasured confounding, selection bias, and measurement error (individually or in combination; VanderWeele & Ding (2017) <doi:10.7326/M16-2607>; Smith & VanderWeele (2019) <doi:10.1097/EDE.0000000000001032>; VanderWeele & Li (2019) <doi:10.1093/aje/kwz133>; Smith & VanderWeele (2021) <arXiv:2005.02908>). Also conducts sensitivity analyses for unmeasured confounding in meta-analyses (Mathur & VanderWeele (2020a) <doi:10.1080/01621459.2018.1529598>; Mathur & VanderWeele (2020b) <doi:10.1097/EDE.0000000000001180>) and for additive measures of effect modification (Mathur et al., under review).
Maintained by Maya B. Mathur. Last updated 3 years ago.
3 stars 6.35 score 99 scripts 1 dependentscran
sasLM:'SAS' Linear Model
This is a core implementation of 'SAS' procedures for linear models - GLM, REG, ANOVA, TTEST, FREQ, and UNIVARIATE. Some R packages provide type II and type III SS. However, the results of nested and complex designs are often different from those of 'SAS.' Different results does not necessarily mean incorrectness. However, many wants the same results to SAS. This package aims to achieve that. Reference: Littell RC, Stroup WW, Freund RJ (2002, ISBN:0-471-22174-0).
Maintained by Kyun-Seop Bae. Last updated 6 months ago.
2.55 score 3 dependentswilart
SMARTbayesR:Bayesian Set of Best Dynamic Treatment Regimes and Sample Size in SMARTs for Binary Outcomes
Permits determination of a set of optimal dynamic treatment regimes and sample size for a SMART design in the Bayesian setting with binary outcomes. Please see Artman (2020) <arXiv:2008.02341>.
Maintained by William Artman. Last updated 3 years ago.
2.00 score 2 scripts