Showing 2 of total 2 results (show query)
mlr-org
bbotk:Black-Box Optimization Toolkit
Features highly configurable search spaces via the 'paradox' package and optimizes every user-defined objective function. The package includes several optimization algorithms e.g. Random Search, Iterated Racing, Bayesian Optimization (in 'mlr3mbo') and Hyperband (in 'mlr3hyperband'). bbotk is the base package of 'mlr3tuning', 'mlr3fselect' and 'miesmuschel'.
Maintained by Marc Becker. Last updated 4 months ago.
bbotkblack-box-optimizationdata-sciencehyperparameter-optimizationhyperparameter-tuningmachine-learningmlr3optimization
22 stars 9.83 score 166 scripts 14 dependentsmb706
mlrintermbo:Model-Based Optimization for 'mlr3' Through 'mlrMBO'
The 'mlrMBO' package can ordinarily not be used for optimization within 'mlr3', because of incompatibilities of their respective class systems. 'mlrintermbo' offers a compatibility interface that provides 'mlrMBO' as an 'mlr3tuning' 'Tuner' object, for tuning of machine learning algorithms within 'mlr3', as well as a 'bbotk' 'Optimizer' object for optimization of general objective functions using the 'bbotk' black box optimization framework. The control parameters of 'mlrMBO' are faithfully reproduced as a 'paradox' 'ParamSet'.
Maintained by Martin Binder. Last updated 5 months ago.
4 stars 4.08 score 12 scripts