GeoModels:Procedures for Gaussian and Non Gaussian Geostatistical (Large)
Data Analysis
Functions for Gaussian and Non Gaussian (bivariate) spatial and spatio-temporal data analysis are provided for a)
(fast) simulation of random fields, b) inference for random
fields using standard likelihood and a likelihood approximation
method called weighted composite likelihood based on pairs and
b) prediction using (local) best linear unbiased prediction.
Weighted composite likelihood can be very efficient for
estimating massive datasets. Both regression and spatial
(temporal) dependence analysis can be jointly performed.
Flexible covariance models for spatial and spatial-temporal
data on Euclidean domains and spheres are provided. There are
also many useful functions for plotting and performing
diagnostic analysis. Different non Gaussian random fields can
be considered in the analysis. Among them, random fields with
marginal distributions such as Skew-Gaussian, Student-t,
Tukey-h, Sin-Arcsin, Two-piece, Weibull, Gamma, Log-Gaussian,
Binomial, Negative Binomial and Poisson. See the URL for the
papers associated with this package, as for instance,
Bevilacqua and Gaetan (2015) <doi:10.1007/s11222-014-9460-6>,
Bevilacqua et al. (2016) <doi:10.1007/s13253-016-0256-3>,
Vallejos et al. (2020) <doi:10.1007/978-3-030-56681-4>,
Bevilacqua et. al (2020) <doi:10.1002/env.2632>, Bevilacqua et.
al (2021) <doi:10.1111/sjos.12447>, Bevilacqua et al. (2022)
<doi:10.1016/j.jmva.2022.104949>, Morales-Navarrete et al.
(2023) <doi:10.1080/01621459.2022.2140053>, and a large class
of examples and tutorials.