Showing 2 of total 2 results (show query)
rebeccasalles
TSPred:Functions for Benchmarking Time Series Prediction
Functions for defining and conducting a time series prediction process including pre(post)processing, decomposition, modelling, prediction and accuracy assessment. The generated models and its yielded prediction errors can be used for benchmarking other time series prediction methods and for creating a demand for the refinement of such methods. For this purpose, benchmark data from prediction competitions may be used.
Maintained by Rebecca Pontes Salles. Last updated 4 years ago.
benchmarkinglinear-modelsmachine-learningnonstationaritytime-series-forecasttime-series-prediction
24 stars 5.53 score 94 scripts 1 dependentscran
tea:Threshold Estimation Approaches
Different approaches for selecting the threshold in generalized Pareto distributions. Most of them are based on minimizing the AMSE-criterion or at least by reducing the bias of the assumed GPD-model. Others are heuristically motivated by searching for stable sample paths, i.e. a nearly constant region of the tail index estimator with respect to k, which is the number of data in the tail. The third class is motivated by graphical inspection. In addition, a sequential testing procedure for GPD-GoF-tests is also implemented here.
Maintained by Johannes Ossberger. Last updated 5 years ago.
1.00 score