Showing 200 of total 871 results (show query)

tidymodels

infer:Tidy Statistical Inference

The objective of this package is to perform inference using an expressive statistical grammar that coheres with the tidy design framework.

Maintained by Simon Couch. Last updated 6 months ago.

14.0 match 734 stars 15.69 score 3.5k scripts 17 dependents

m-py

anticlust:Subset Partitioning via Anticlustering

The method of anticlustering partitions a pool of elements into groups (i.e., anticlusters) with the goal of maximizing between-group similarity or within-group heterogeneity. The anticlustering approach thereby reverses the logic of cluster analysis that strives for high within-group homogeneity and clear separation between groups. Computationally, anticlustering is accomplished by maximizing instead of minimizing a clustering objective function, such as the intra-cluster variance (used in k-means clustering) or the sum of pairwise distances within clusters. The main function anticlustering() gives access to optimal and heuristic anticlustering methods described in Papenberg and Klau (2021; <doi:10.1037/met0000301>), Brusco et al. (2020; <doi:10.1111/bmsp.12186>), and Papenberg (2024; <doi:10.1111/bmsp.12315>). The optimal algorithms require that an integer linear programming solver is installed. This package will install 'lpSolve' (<https://cran.r-project.org/package=lpSolve>) as a default solver, but it is also possible to use the package 'Rglpk' (<https://cran.r-project.org/package=Rglpk>), which requires the GNU linear programming kit (<https://www.gnu.org/software/glpk/glpk.html>), or the package 'Rsymphony' (<https://cran.r-project.org/package=Rsymphony>), which requires the SYMPHONY ILP solver (<https://github.com/coin-or/SYMPHONY>). 'Rglpk' and 'Rsymphony' have to be manually installed by the user because they are only "suggested" dependencies. Full access to the bicriterion anticlustering method proposed by Brusco et al. (2020) is given via the function bicriterion_anticlustering(), while kplus_anticlustering() implements the full functionality of the k-plus anticlustering approach proposed by Papenberg (2024). Some other functions are available to solve classical clustering problems. The function balanced_clustering() applies a cluster analysis under size constraints, i.e., creates equal-sized clusters. The function matching() can be used for (unrestricted, bipartite, or K-partite) matching. The function wce() can be used optimally solve the (weighted) cluster editing problem, also known as correlation clustering, clique partitioning problem or transitivity clustering.

Maintained by Martin Papenberg. Last updated 4 days ago.

9.3 match 31 stars 9.35 score 60 scripts 2 dependents

r-spatial

spdep:Spatial Dependence: Weighting Schemes, Statistics

A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunção/Reis' (1999) <doi:10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID-SIM179%3E3.0.CO;2-I> Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x> and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) <doi:10.1111/j.1538-4632.2007.00708.x>, local 'Moran's I', 'Gearys C' ('Anselin' 1995) <doi:10.1111/j.1538-4632.1995.tb00338.x> and 'Getis/Ord' G ('Ord' and 'Getis' 1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>, 'saddlepoint' approximations ('Tiefelsdorf' 2002) <doi:10.1111/j.1538-4632.2002.tb01084.x> and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) <doi:10.1016/j.csda.2008.07.021> and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') <doi:10.1007/s00168-011-0492-y>. The implementation of most of these measures is described in 'Bivand' and 'Wong' (2018) <doi:10.1007/s11749-018-0599-x>, with further extensions in 'Bivand' (2022) <doi:10.1111/gean.12319>. 'Lagrange' multiplier tests for spatial dependence in linear models are provided ('Anselin et al'. 1996) <doi:10.1016/0166-0462(95)02111-6>, as are 'Rao' score tests for hypothesised spatial 'Durbin' models based on linear models ('Koley' and 'Bera' 2023) <doi:10.1080/17421772.2023.2256810>. A local indicators for categorical data (LICD) implementation based on 'Carrer et al.' (2021) <doi:10.1016/j.jas.2020.105306> and 'Bivand et al.' (2017) <doi:10.1016/j.spasta.2017.03.003> was added in 1.3-7. From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'.

Maintained by Roger Bivand. Last updated 18 days ago.

spatial-autocorrelationspatial-dependencespatial-weights

4.0 match 131 stars 16.62 score 6.0k scripts 107 dependents

mthrun

DataVisualizations:Visualizations of High-Dimensional Data

Gives access to data visualisation methods that are relevant from the data scientist's point of view. The flagship idea of 'DataVisualizations' is the mirrored density plot (MD-plot) for either classified or non-classified multivariate data published in Thrun, M.C. et al.: "Analyzing the Fine Structure of Distributions" (2020), PLoS ONE, <DOI:10.1371/journal.pone.0238835>. The MD-plot outperforms the box-and-whisker diagram (box plot), violin plot and bean plot and geom_violin plot of ggplot2. Furthermore, a collection of various visualization methods for univariate data is provided. In the case of exploratory data analysis, 'DataVisualizations' makes it possible to inspect the distribution of each feature of a dataset visually through a combination of four methods. One of these methods is the Pareto density estimation (PDE) of the probability density function (pdf). Additionally, visualizations of the distribution of distances using PDE, the scatter-density plot using PDE for two variables as well as the Shepard density plot and the Bland-Altman plot are presented here. Pertaining to classified high-dimensional data, a number of visualizations are described, such as f.ex. the heat map and silhouette plot. A political map of the world or Germany can be visualized with the additional information defined by a classification of countries or regions. By extending the political map further, an uncomplicated function for a Choropleth map can be used which is useful for measurements across a geographic area. For categorical features, the Pie charts, slope charts and fan plots, improved by the ABC analysis, become usable. More detailed explanations are found in the book by Thrun, M.C.: "Projection-Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9>.

Maintained by Michael Thrun. Last updated 2 months ago.

cpp

6.3 match 7 stars 7.72 score 118 scripts 7 dependents

isciences

exactextractr:Fast Extraction from Raster Datasets using Polygons

Quickly and accurately summarizes raster values over polygonal areas ("zonal statistics").

Maintained by Daniel Baston. Last updated 7 months ago.

gisrasterrcppgeoscpp

3.3 match 286 stars 12.13 score 1.4k scripts 14 dependents

cotima

CoTiMA:Continuous Time Meta-Analysis ('CoTiMA')

The 'CoTiMA' package performs meta-analyses of correlation matrices of repeatedly measured variables taken from studies that used different time intervals. Different time intervals between measurement occasions impose problems for meta-analyses because the effects (e.g. cross-lagged effects) cannot be simply aggregated, for example, by means of common fixed or random effects analysis. However, continuous time math, which is applied in 'CoTiMA', can be used to extrapolate or intrapolate the results from all studies to any desired time lag. By this, effects obtained in studies that used different time intervals can be meta-analyzed. 'CoTiMA' fits models to empirical data using the structural equation model (SEM) package 'ctsem', the effects specified in a SEM are related to parameters that are not directly included in the model (i.e., continuous time parameters; together, they represent the continuous time structural equation model, CTSEM). Statistical model comparisons and significance tests are then performed on the continuous time parameter estimates. 'CoTiMA' also allows analysis of publication bias (Egger's test, PET-PEESE estimates, zcurve analysis etc.) and analysis of statistical power (post hoc power, required sample sizes). See Dormann, C., Guthier, C., & Cortina, J. M. (2019) <doi:10.1177/1094428119847277>. and Guthier, C., Dormann, C., & Voelkle, M. C. (2020) <doi:10.1037/bul0000304>.

Maintained by Markus Homberg. Last updated 2 months ago.

6.9 match 4 stars 5.28 score

epicentre-msf

dbc:Dictionary-Based Cleaning

Tools for dictionary-based data cleaning.

Maintained by Patrick Barks. Last updated 1 years ago.

13.5 match 2 stars 2.48 score 4 scripts 1 dependents

ajwills72

grt:General Recognition Theory

Functions to generate and analyze data for psychology experiments based on the General Recognition Theory.

Maintained by Andy Wills. Last updated 8 years ago.

13.9 match 2.34 score 44 scripts

laplacesdemonr

LaplacesDemon:Complete Environment for Bayesian Inference

Provides a complete environment for Bayesian inference using a variety of different samplers (see ?LaplacesDemon for an overview).

Maintained by Henrik Singmann. Last updated 12 months ago.

2.3 match 93 stars 13.45 score 1.8k scripts 60 dependents

heike

ggparallel:Variations of Parallel Coordinate Plots for Categorical Data

Create hammock plots, parallel sets, and common angle plots with 'ggplot2'.

Maintained by Heike Hofmann. Last updated 1 years ago.

4.7 match 41 stars 5.32 score 51 scripts

rkabacoff

qacBase:Functions to Facilitate Exploratory Data Analysis

Functions for descriptive statistics, data management, and data visualization.

Maintained by Kabacoff Robert. Last updated 3 years ago.

edastatistics

4.7 match 1 stars 5.13 score 45 scripts