Showing 106 of total 106 results (show query)

e-sensing

sits:Satellite Image Time Series Analysis for Earth Observation Data Cubes

An end-to-end toolkit for land use and land cover classification using big Earth observation data, based on machine learning methods applied to satellite image data cubes, as described in Simoes et al (2021) <doi:10.3390/rs13132428>. Builds regular data cubes from collections in AWS, Microsoft Planetary Computer, Brazil Data Cube, Copernicus Data Space Environment (CDSE), Digital Earth Africa, Digital Earth Australia, NASA HLS using the Spatio-temporal Asset Catalog (STAC) protocol (<https://stacspec.org/>) and the 'gdalcubes' R package developed by Appel and Pebesma (2019) <doi:10.3390/data4030092>. Supports visualization methods for images and time series and smoothing filters for dealing with noisy time series. Includes functions for quality assessment of training samples using self-organized maps as presented by Santos et al (2021) <doi:10.1016/j.isprsjprs.2021.04.014>. Includes methods to reduce training samples imbalance proposed by Chawla et al (2002) <doi:10.1613/jair.953>. Provides machine learning methods including support vector machines, random forests, extreme gradient boosting, multi-layer perceptrons, temporal convolutional neural networks proposed by Pelletier et al (2019) <doi:10.3390/rs11050523>, and temporal attention encoders by Garnot and Landrieu (2020) <doi:10.48550/arXiv.2007.00586>. Supports GPU processing of deep learning models using torch <https://torch.mlverse.org/>. Performs efficient classification of big Earth observation data cubes and includes functions for post-classification smoothing based on Bayesian inference as described by Camara et al (2024) <doi:10.3390/rs16234572>, and methods for active learning and uncertainty assessment. Supports region-based time series analysis using package supercells <https://jakubnowosad.com/supercells/>. Enables best practices for estimating area and assessing accuracy of land change as recommended by Olofsson et al (2014) <doi:10.1016/j.rse.2014.02.015>. Minimum recommended requirements: 16 GB RAM and 4 CPU dual-core.

Maintained by Gilberto Camara. Last updated 2 months ago.

big-earth-datacbersearth-observationeo-datacubesgeospatialimage-time-seriesland-cover-classificationlandsatplanetary-computerr-spatialremote-sensingrspatialsatellite-image-time-seriessatellite-imagerysentinel-2stac-apistac-catalogcpp

494 stars 9.50 score 384 scripts

eco-hydro

phenofit:Extract Remote Sensing Vegetation Phenology

The merits of 'TIMESAT' and 'phenopix' are adopted. Besides, a simple and growing season dividing method and a practical snow elimination method based on Whittaker were proposed. 7 curve fitting methods and 4 phenology extraction methods were provided. Parameters boundary are considered for every curve fitting methods according to their ecological meaning. And 'optimx' is used to select best optimization method for different curve fitting methods. Reference: Kong, D., (2020). R package: A state-of-the-art Vegetation Phenology extraction package, phenofit version 0.3.1, <doi:10.5281/zenodo.5150204>; Kong, D., Zhang, Y., Wang, D., Chen, J., & Gu, X. (2020). Photoperiod Explains the Asynchronization Between Vegetation Carbon Phenology and Vegetation Greenness Phenology. Journal of Geophysical Research: Biogeosciences, 125(8), e2020JG005636. <doi:10.1029/2020JG005636>; Kong, D., Zhang, Y., Gu, X., & Wang, D. (2019). A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 155, 13–24; Zhang, Q., Kong, D., Shi, P., Singh, V.P., Sun, P., 2018. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agric. For. Meteorol. 248, 408–417. <doi:10.1016/j.agrformet.2017.10.026>.

Maintained by Dongdong Kong. Last updated 2 months ago.

phenologyremote-sensingopenblascppopenmp

78 stars 7.71 score 332 scripts

maxwell-geospatial

geodl:Geospatial Semantic Segmentation with Torch and Terra

Provides tools for semantic segmentation of geospatial data using convolutional neural network-based deep learning. Utility functions allow for creating masks, image chips, data frames listing image chips in a directory, and DataSets for use within DataLoaders. Additional functions are provided to serve as checks during the data preparation and training process. A UNet architecture can be defined with 4 blocks in the encoder, a bottleneck block, and 4 blocks in the decoder. The UNet can accept a variable number of input channels, and the user can define the number of feature maps produced in each encoder and decoder block and the bottleneck. Users can also choose to (1) replace all rectified linear unit (ReLU) activation functions with leaky ReLU or swish, (2) implement attention gates along the skip connections, (3) implement squeeze and excitation modules within the encoder blocks, (4) add residual connections within all blocks, (5) replace the bottleneck with a modified atrous spatial pyramid pooling (ASPP) module, and/or (6) implement deep supervision using predictions generated at each stage in the decoder. A unified focal loss framework is implemented after Yeung et al. (2022) <https://doi.org/10.1016/j.compmedimag.2021.102026>. We have also implemented assessment metrics using the 'luz' package including F1-score, recall, and precision. Trained models can be used to predict to spatial data without the need to generate chips from larger spatial extents. Functions are available for performing accuracy assessment. The package relies on 'torch' for implementing deep learning, which does not require the installation of a 'Python' environment. Raster geospatial data are handled with 'terra'. Models can be trained using a Compute Unified Device Architecture (CUDA)-enabled graphics processing unit (GPU); however, multi-GPU training is not supported by 'torch' in 'R'.

Maintained by Aaron Maxwell. Last updated 8 months ago.

12 stars 6.86 score 20 scripts

bioc

DeepPINCS:Protein Interactions and Networks with Compounds based on Sequences using Deep Learning

The identification of novel compound-protein interaction (CPI) is important in drug discovery. Revealing unknown compound-protein interactions is useful to design a new drug for a target protein by screening candidate compounds. The accurate CPI prediction assists in effective drug discovery process. To identify potential CPI effectively, prediction methods based on machine learning and deep learning have been developed. Data for sequences are provided as discrete symbolic data. In the data, compounds are represented as SMILES (simplified molecular-input line-entry system) strings and proteins are sequences in which the characters are amino acids. The outcome is defined as a variable that indicates how strong two molecules interact with each other or whether there is an interaction between them. In this package, a deep-learning based model that takes only sequence information of both compounds and proteins as input and the outcome as output is used to predict CPI. The model is implemented by using compound and protein encoders with useful features. The CPI model also supports other modeling tasks, including protein-protein interaction (PPI), chemical-chemical interaction (CCI), or single compounds and proteins. Although the model is designed for proteins, DNA and RNA can be used if they are represented as sequences.

Maintained by Dongmin Jung. Last updated 5 months ago.

softwarenetworkgraphandnetworkneuralnetworkopenjdk

4.78 score 4 scripts 2 dependents

jiaxiangbu

add2ggplot:Add to 'ggplot2'

Create 'ggplot2' themes and color palettes.

Maintained by Jiaxiang Li. Last updated 5 years ago.

ggplot-extensionggplot2-theme

4 stars 4.30 score 8 scripts

hughjonesd

apicheck:Explore the Historical API of R Packages

Check when functions were introduced and/or APIs changed in packages, using the 'MRAN' service.

Maintained by David Hugh-Jones. Last updated 6 years ago.

21 stars 3.02 score 5 scripts

economic

epidatatools:Data tools used at the Economic Policy Institute

Tools used by the Economic Policy Institute.

Maintained by Ben Zipperer. Last updated 4 months ago.

1 stars 2.26 score 18 scripts

bips-hb

survnet:Artificial neural networks for survival analysis

Artificial neural networks for survival analysis

Maintained by Marvin N. Wright. Last updated 4 years ago.

2 stars 2.00 score 9 scripts