Showing 90 of total 90 results (show query)

nepem-ufsc

metan:Multi Environment Trials Analysis

Performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.

Maintained by Tiago Olivoto. Last updated 26 days ago.

2 stars 9.48 score 1.3k scripts 2 dependents

mirzaghaderi

rtpcr:qPCR Data Analysis

Various methods are employed for statistical analysis and graphical presentation of real-time PCR (quantitative PCR or qPCR) data. 'rtpcr' handles amplification efficiency calculation, statistical analysis and graphical representation of real-time PCR data based on up to two reference genes. By accounting for amplification efficiency values, 'rtpcr' was developed using a general calculation method described by Ganger et al. (2017) <doi:10.1186/s12859-017-1949-5> and Taylor et al. (2019) <doi:10.1016/j.tibtech.2018.12.002>, covering both the Livak and Pfaffl methods. Based on the experimental conditions, the functions of the 'rtpcr' package use t-test (for experiments with a two-level factor), analysis of variance (ANOVA), analysis of covariance (ANCOVA) or analysis of repeated measure data to calculate the fold change (FC, Delta Delta Ct method) or relative expression (RE, Delta Ct method). The functions further provide standard errors and confidence intervals for means, apply statistical mean comparisons and present significance. To facilitate function application, different data sets were used as examples and the outputs were explained. ‘rtpcr’ package also provides bar plots using various controlling arguments. The 'rtpcr' package is user-friendly and easy to work with and provides an applicable resource for analyzing real-time PCR data.

Maintained by Ghader Mirzaghaderi. Last updated 8 days ago.

data-analysisqpcr

1 stars 4.90 score 3 scripts

kapelner

SeqExpMatch:Sequential Experimental Design via Matching on-the-Fly

Generates the following sequential two-arm experimental designs: (1) completely randomized (Bernoulli) (2) balanced completely randomized (3) Efron's (1971) Biased Coin (4) Atkinson's (1982) Covariate-Adjusted Biased Coin (5) Kapelner and Krieger's (2014) Covariate-Adjusted Matching on the Fly (6) Kapelner and Krieger's (2021) CARA Matching on the Fly with Differential Covariate Weights (Naive) (7) Kapelner and Krieger's (2021) CARA Matching on the Fly with Differential Covariate Weights (Stepwise) and also provides the following types of inference: (1) estimation (with both Z-style estimators and OLS estimators), (2) frequentist testing (via asymptotic distribution results and via employing the nonparametric randomization test) and (3) frequentist confidence intervals (only under the superpopulation sampling assumption currently). Details can be found in our publication: Kapelner and Krieger "A Matching Procedure for Sequential Experiments that Iteratively Learns which Covariates Improve Power" (2020) <arXiv:2010.05980>. We now offer support for incidence, count, proportion and survival (with censoring) outcome types. We also have support for adding responses whenever they become available, and we can impute missing data in the subjects' covariate records (where each covariate record can thereby have different information). On the inference side, there is built-in support for many types of parametric models such as random effects for incidence outcomes and count outcomes. There is Kaplan-Meier estimation, weibull and coxph models for survival outcomes.

Maintained by Adam Kapelner. Last updated 7 months ago.

3.48 score 1 scripts