Showing 200 of total 335 results (show query)

bioc

RBGL:An interface to the BOOST graph library

A fairly extensive and comprehensive interface to the graph algorithms contained in the BOOST library.

Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.

graphandnetworknetworkcpp

8.59 score 320 scripts 132 dependents

bioc

Category:Category Analysis

A collection of tools for performing category (gene set enrichment) analysis.

Maintained by Bioconductor Package Maintainer. Last updated 5 months ago.

annotationgopathwaysgenesetenrichment

7.93 score 183 scripts 16 dependents

bioc

ViSEAGO:ViSEAGO: a Bioconductor package for clustering biological functions using Gene Ontology and semantic similarity

The main objective of ViSEAGO package is to carry out a data mining of biological functions and establish links between genes involved in the study. We developed ViSEAGO in R to facilitate functional Gene Ontology (GO) analysis of complex experimental design with multiple comparisons of interest. It allows to study large-scale datasets together and visualize GO profiles to capture biological knowledge. The acronym stands for three major concepts of the analysis: Visualization, Semantic similarity and Enrichment Analysis of Gene Ontology. It provides access to the last current GO annotations, which are retrieved from one of NCBI EntrezGene, Ensembl or Uniprot databases for several species. Using available R packages and novel developments, ViSEAGO extends classical functional GO analysis to focus on functional coherence by aggregating closely related biological themes while studying multiple datasets at once. It provides both a synthetic and detailed view using interactive functionalities respecting the GO graph structure and ensuring functional coherence supplied by semantic similarity. ViSEAGO has been successfully applied on several datasets from different species with a variety of biological questions. Results can be easily shared between bioinformaticians and biologists, enhancing reporting capabilities while maintaining reproducibility.

Maintained by Aurelien Brionne. Last updated 3 months ago.

softwareannotationgogenesetenrichmentmultiplecomparisonclusteringvisualization

6.64 score 22 scripts

bioc

GRaNIE:GRaNIE: Reconstruction cell type specific gene regulatory networks including enhancers using single-cell or bulk chromatin accessibility and RNA-seq data

Genetic variants associated with diseases often affect non-coding regions, thus likely having a regulatory role. To understand the effects of genetic variants in these regulatory regions, identifying genes that are modulated by specific regulatory elements (REs) is crucial. The effect of gene regulatory elements, such as enhancers, is often cell-type specific, likely because the combinations of transcription factors (TFs) that are regulating a given enhancer have cell-type specific activity. This TF activity can be quantified with existing tools such as diffTF and captures differences in binding of a TF in open chromatin regions. Collectively, this forms a gene regulatory network (GRN) with cell-type and data-specific TF-RE and RE-gene links. Here, we reconstruct such a GRN using single-cell or bulk RNAseq and open chromatin (e.g., using ATACseq or ChIPseq for open chromatin marks) and optionally (Capture) Hi-C data. Our network contains different types of links, connecting TFs to regulatory elements, the latter of which is connected to genes in the vicinity or within the same chromatin domain (TAD). We use a statistical framework to assign empirical FDRs and weights to all links using a permutation-based approach.

Maintained by Christian Arnold. Last updated 5 months ago.

softwaregeneexpressiongeneregulationnetworkinferencegenesetenrichmentbiomedicalinformaticsgeneticstranscriptomicsatacseqrnaseqgraphandnetworkregressiontranscriptionchipseq

5.40 score 24 scripts

bioc

GlobalAncova:Global test for groups of variables via model comparisons

The association between a variable of interest (e.g. two groups) and the global pattern of a group of variables (e.g. a gene set) is tested via a global F-test. We give the following arguments in support of the GlobalAncova approach: After appropriate normalisation, gene-expression-data appear rather symmetrical and outliers are no real problem, so least squares should be rather robust. ANCOVA with interaction yields saturated data modelling e.g. different means per group and gene. Covariate adjustment can help to correct for possible selection bias. Variance homogeneity and uncorrelated residuals cannot be expected. Application of ordinary least squares gives unbiased, but no longer optimal estimates (Gauss-Markov-Aitken). Therefore, using the classical F-test is inappropriate, due to correlation. The test statistic however mirrors deviations from the null hypothesis. In combination with a permutation approach, empirical significance levels can be approximated. Alternatively, an approximation yields asymptotic p-values. The framework is generalized to groups of categorical variables or even mixed data by a likelihood ratio approach. Closed and hierarchical testing procedures are supported. This work was supported by the NGFN grant 01 GR 0459, BMBF, Germany and BMBF grant 01ZX1309B, Germany.

Maintained by Manuela Hummel. Last updated 5 months ago.

microarrayonechanneldifferentialexpressionpathwaysregression

5.31 score 9 scripts 1 dependents

bioc

ROntoTools:R Onto-Tools suite

Suite of tools for functional analysis.

Maintained by Sorin Draghici. Last updated 5 months ago.

networkanalysismicroarraygraphsandnetworks

5.10 score 15 scripts 2 dependents