Showing 200 of total 266 results (show query)

bioc

gwascat:representing and modeling data in the EMBL-EBI GWAS catalog

Represent and model data in the EMBL-EBI GWAS catalog.

Maintained by VJ Carey. Last updated 6 days ago.

genetics

6.35 score 110 scripts 2 dependents

bioc

SCOPE:A normalization and copy number estimation method for single-cell DNA sequencing

Whole genome single-cell DNA sequencing (scDNA-seq) enables characterization of copy number profiles at the cellular level. This circumvents the averaging effects associated with bulk-tissue sequencing and has increased resolution yet decreased ambiguity in deconvolving cancer subclones and elucidating cancer evolutionary history. ScDNA-seq data is, however, sparse, noisy, and highly variable even within a homogeneous cell population, due to the biases and artifacts that are introduced during the library preparation and sequencing procedure. Here, we propose SCOPE, a normalization and copy number estimation method for scDNA-seq data. The distinguishing features of SCOPE include: (i) utilization of cell-specific Gini coefficients for quality controls and for identification of normal/diploid cells, which are further used as negative control samples in a Poisson latent factor model for normalization; (ii) modeling of GC content bias using an expectation-maximization algorithm embedded in the Poisson generalized linear models, which accounts for the different copy number states along the genome; (iii) a cross-sample iterative segmentation procedure to identify breakpoints that are shared across cells from the same genetic background.

Maintained by Rujin Wang. Last updated 5 months ago.

singlecellnormalizationcopynumbervariationsequencingwholegenomecoveragealignmentqualitycontroldataimportdnaseq

5.92 score 84 scripts

bioc

ChIPQC:Quality metrics for ChIPseq data

Quality metrics for ChIPseq data.

Maintained by Tom Carroll. Last updated 5 months ago.

sequencingchipseqqualitycontrolreportwriting

5.45 score 140 scripts

bioc

RESOLVE:RESOLVE: An R package for the efficient analysis of mutational signatures from cancer genomes

Cancer is a genetic disease caused by somatic mutations in genes controlling key biological functions such as cellular growth and division. Such mutations may arise both through cell-intrinsic and exogenous processes, generating characteristic mutational patterns over the genome named mutational signatures. The study of mutational signatures have become a standard component of modern genomics studies, since it can reveal which (environmental and endogenous) mutagenic processes are active in a tumor, and may highlight markers for therapeutic response. Mutational signatures computational analysis presents many pitfalls. First, the task of determining the number of signatures is very complex and depends on heuristics. Second, several signatures have no clear etiology, casting doubt on them being computational artifacts rather than due to mutagenic processes. Last, approaches for signatures assignment are greatly influenced by the set of signatures used for the analysis. To overcome these limitations, we developed RESOLVE (Robust EStimation Of mutationaL signatures Via rEgularization), a framework that allows the efficient extraction and assignment of mutational signatures. RESOLVE implements a novel algorithm that enables (i) the efficient extraction, (ii) exposure estimation, and (iii) confidence assessment during the computational inference of mutational signatures.

Maintained by Luca De Sano. Last updated 8 days ago.

biomedicalinformaticssomaticmutation

1 stars 4.60 score 3 scripts