Showing 26 of total 26 results (show query)

pik-piam

mrremind:MadRat REMIND Input Data Package

The mrremind packages contains data preprocessing for the REMIND model.

Maintained by Lavinia Baumstark. Last updated 2 days ago.

4 stars 6.25 score 15 scripts 1 dependents

norawuerz

saeTrafo:Transformations for Unit-Level Small Area Models

The aim of this package is to offer new methodology for unit-level small area models under transformations and limited population auxiliary information. In addition to this new methodology, the widely used nested error regression model without transformations (see "An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data" by Battese, Harter and Fuller (1988) <doi:10.1080/01621459.1988.10478561>) and its well-known uncertainty estimate (see "The estimation of the mean squared error of small-area estimators" by Prasad and Rao (1990) <doi:10.1080/01621459.1995.10476570>) are provided. In this package, the log transformation and the data-driven log-shift transformation are provided. If a transformation is selected, an appropriate method is chosen depending on the respective input of the population data: Individual population data (see "Empirical best prediction under a nested error model with log transformation" by Molina and Martín (2018) <doi:10.1214/17-aos1608>) but also aggregated population data (see "Estimating regional income indicators under transformations and access to limited population auxiliary information" by Würz, Schmid and Tzavidis <unpublished>) can be entered. Especially under limited data access, new methodologies are provided in saeTrafo. Several options are available to assess the used model and to judge, present and export its results. For a detailed description of the package and the methods used see the corresponding vignette.

Maintained by Nora Würz. Last updated 10 months ago.

1 stars 3.70 score

maribelborrajo

LearningStats:Elemental Descriptive and Inferential Statistics

Provides tools to teach students elemental statistics. The main topics covered are descriptive statistics, probability models (discrete and continuous variables) and statistical inference (confidence intervals and hypothesis tests). One of the main advantages of this package is that allows the user to read quite a variety of types of data files with one unique command. Moreover it includes shortcuts to simple but up-to-now not in R descriptive features such a complete frequency table or an histogram with the optimal number of intervals. Related to model distributions (both discrete and continuous), the package allows the student to easy plot the mass/density function, distribution function and quantile function just detailing as input arguments the known population parameters. The inference related tools are basically confidence interval and hypothesis testing. Having defined independent commands for these two tools makes it easier for the student to understand what the software is performing, and it also helps the student to have a better knowledge on which specific tool they need to use in each situation. Moreover, the hypothesis testing commands provide not only the numeric result on the screen but also a very intuitive graph (which includes the statistic distribution, the observed value of the statistic, the rejection area and the p-value) that is very useful for the student to visualise the process. The regression section includes up to now, a simple linear model, with one single command the student can obtain the numeric summary as well as the corresponding diagram with the adjusted regression model and a legend with basic information (formula of the adjusted model and R-squared).

Maintained by María Isabel Borrajo-García. Last updated 4 years ago.

1.00 score 2 scripts