Showing 154 of total 154 results (show query)

jomulder

BFpack:Flexible Bayes Factor Testing of Scientific Expectations

Implementation of default Bayes factors for testing statistical hypotheses under various statistical models. The package is intended for applied quantitative researchers in the social and behavioral sciences, medical research, and related fields. The Bayes factor tests can be executed for statistical models such as univariate and multivariate normal linear models, correlation analysis, generalized linear models, special cases of linear mixed models, survival models, relational event models. Parameters that can be tested are location parameters (e.g., group means, regression coefficients), variances (e.g., group variances), and measures of association (e.g,. polychoric/polyserial/biserial/tetrachoric/product moments correlations), among others. The statistical underpinnings are described in O'Hagan (1995) <DOI:10.1111/j.2517-6161.1995.tb02017.x>, De Santis and Spezzaferri (2001) <DOI:10.1016/S0378-3758(00)00240-8>, Mulder and Xin (2022) <DOI:10.1080/00273171.2021.1904809>, Mulder and Gelissen (2019) <DOI:10.1080/02664763.2021.1992360>, Mulder (2016) <DOI:10.1016/j.jmp.2014.09.004>, Mulder and Fox (2019) <DOI:10.1214/18-BA1115>, Mulder and Fox (2013) <DOI:10.1007/s11222-011-9295-3>, Boeing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017) <DOI:10.1037/met0000116>, Hoijtink, Mulder, van Lissa, and Gu (2018) <DOI:10.1037/met0000201>, Gu, Mulder, and Hoijtink (2018) <DOI:10.1111/bmsp.12110>, Hoijtink, Gu, and Mulder (2018) <DOI:10.1111/bmsp.12145>, and Hoijtink, Gu, Mulder, and Rosseel (2018) <DOI:10.1037/met0000187>. When using the packages, please refer to the package Mulder et al. (2021) <DOI:10.18637/jss.v100.i18> and the relevant methodological papers.

Maintained by Joris Mulder. Last updated 2 months ago.

fortranopenblas

15 stars 8.24 score 55 scripts 3 dependents

rsginc

RSGHB:Functions for Hierarchical Bayesian Estimation: A Flexible Approach

Functions for estimating models using a Hierarchical Bayesian (HB) framework. The flexibility comes in allowing the user to specify the likelihood function directly instead of assuming predetermined model structures. Types of models that can be estimated with this code include the family of discrete choice models (Multinomial Logit, Mixed Logit, Nested Logit, Error Components Logit and Latent Class) as well ordered response models like ordered probit and ordered logit. In addition, the package allows for flexibility in specifying parameters as either fixed (non-varying across individuals) or random with continuous distributions. Parameter distributions supported include normal, positive/negative log-normal, positive/negative censored normal, and the Johnson SB distribution. Kenneth Train's Matlab and Gauss code for doing Hierarchical Bayesian estimation has served as the basis for a few of the functions included in this package. These Matlab/Gauss functions have been rewritten to be optimized within R. Considerable code has been added to increase the flexibility and usability of the code base. Train's original Gauss and Matlab code can be found here: <http://elsa.berkeley.edu/Software/abstracts/train1006mxlhb.html> See Train's chapter on HB in Discrete Choice with Simulation here: <http://elsa.berkeley.edu/books/choice2.html>; and his paper on using HB with non-normal distributions here: <http://eml.berkeley.edu//~train/trainsonnier.pdf>. The authors would also like to thank the invaluable contributions of Stephane Hess and the Choice Modelling Centre: <https://cmc.leeds.ac.uk/>.

Maintained by Jeff Dumont. Last updated 6 years ago.

26 stars 5.30 score 25 scripts 1 dependents

allengoebl

iopsych:Methods for Industrial/Organizational Psychology

Collection of functions for IO Psychologists.

Maintained by Allen Goebl. Last updated 7 years ago.

3 stars 4.00 score 66 scripts

itsarthurwhite

BayesLCA:Bayesian Latent Class Analysis

Bayesian Latent Class Analysis using several different methods.

Maintained by Arthur White. Last updated 5 years ago.

2 stars 2.48 score 38 scripts

davidchampredon

ern:Effective Reproduction Number Estimation

Estimate the effective reproduction number from wastewater and clinical data sources.

Maintained by David Champredon. Last updated 2 months ago.

jagscpp

2.45 score 14 scripts

bioc

GraphAT:Graph Theoretic Association Tests

Functions and data used in Balasubramanian, et al. (2004)

Maintained by Thomas LaFramboise. Last updated 5 months ago.

networkgraphandnetwork

2.30 score 4 scripts

sourish-cmi

PortRisk:Portfolio Risk Analysis

Risk Attribution of a portfolio with Volatility Risk Analysis.

Maintained by Sourish Das. Last updated 9 years ago.

1 stars 1.00 score 8 scripts

cran

twl:Two-Way Latent Structure Clustering Model

Implementation of a Bayesian two-way latent structure model for integrative genomic clustering. The model clusters samples in relation to distinct data sources, with each subject-dataset receiving a latent cluster label, though cluster labels have across-dataset meaning because of the model formulation. A common scaling across data sources is unneeded, and inference is obtained by a Gibbs Sampler. The model can fit multivariate Gaussian distributed clusters or a heavier-tailed modification of a Gaussian density. Uniquely among integrative clustering models, the formulation makes no nestedness assumptions of samples across data sources -- the user can still fit the model if a study subject only has information from one data source. The package provides a variety of post-processing functions for model examination including ones for quantifying observed alignment of clusterings across genomic data sources. Run time is optimized so that analyses of datasets on the order of thousands of features on fewer than 5 datasets and hundreds of subjects can converge in 1 or 2 days on a single CPU. See "Swanson DM, Lien T, Bergholtz H, Sorlie T, Frigessi A, Investigating Coordinated Architectures Across Clusters in Integrative Studies: a Bayesian Two-Way Latent Structure Model, 2018, <doi:10.1101/387076>, Cold Spring Harbor Laboratory" at <https://www.biorxiv.org/content/early/2018/08/07/387076.full.pdf> for model details.

Maintained by Michael Swanson. Last updated 7 years ago.

1.00 score

cran

robustsae:Robust Bayesian Small Area Estimation

Functions for Robust Bayesian Small Area Estimation.

Maintained by Jiyoun Myung. Last updated 8 years ago.

1.00 score