Showing 119 of total 119 results (show query)

sachaepskamp

semPlot:Path Diagrams and Visual Analysis of Various SEM Packages' Output

Path diagrams and visual analysis of various SEM packages' output.

Maintained by Sacha Epskamp. Last updated 3 years ago.

63 stars 10.64 score 2.1k scripts 13 dependents

anttonalberdi

hilldiv:Integral Analysis of Diversity Based on Hill Numbers

Tools for analysing, comparing, visualising and partitioning diversity based on Hill numbers. 'hilldiv' is an R package that provides a set of functions to assist analysis of diversity for diet reconstruction, microbial community profiling or more general ecosystem characterisation analyses based on Hill numbers, using OTU/ASV tables and associated phylogenetic trees as inputs. The package includes functions for (phylo)diversity measurement, (phylo)diversity profile plotting, (phylo)diversity comparison between samples and groups, (phylo)diversity partitioning and (dis)similarity measurement. All of these grounded in abundance-based and incidence-based Hill numbers. The statistical framework developed around Hill numbers encompasses many of the most broadly employed diversity (e.g. richness, Shannon index, Simpson index), phylogenetic diversity (e.g. Faith's PD, Allen's H, Rao's quadratic entropy) and dissimilarity (e.g. Sorensen index, Unifrac distances) metrics. This enables the most common analyses of diversity to be performed while grounded in a single statistical framework. The methods are described in Jost et al. (2007) <DOI:10.1890/06-1736.1>, Chao et al. (2010) <DOI:10.1098/rstb.2010.0272> and Chiu et al. (2014) <DOI:10.1890/12-0960.1>; and reviewed in the framework of molecularly characterised biological systems in Alberdi & Gilbert (2019) <DOI:10.1111/1755-0998.13014>.

Maintained by Antton Alberdi. Last updated 4 years ago.

11 stars 4.35 score 41 scripts

bioc

DMCHMM:Differentially Methylated CpG using Hidden Markov Model

A pipeline for identifying differentially methylated CpG sites using Hidden Markov Model in bisulfite sequencing data. DNA methylation studies have enabled researchers to understand methylation patterns and their regulatory roles in biological processes and disease. However, only a limited number of statistical approaches have been developed to provide formal quantitative analysis. Specifically, a few available methods do identify differentially methylated CpG (DMC) sites or regions (DMR), but they suffer from limitations that arise mostly due to challenges inherent in bisulfite sequencing data. These challenges include: (1) that read-depths vary considerably among genomic positions and are often low; (2) both methylation and autocorrelation patterns change as regions change; and (3) CpG sites are distributed unevenly. Furthermore, there are several methodological limitations: almost none of these tools is capable of comparing multiple groups and/or working with missing values, and only a few allow continuous or multiple covariates. The last of these is of great interest among researchers, as the goal is often to find which regions of the genome are associated with several exposures and traits. To tackle these issues, we have developed an efficient DMC identification method based on Hidden Markov Models (HMMs) called “DMCHMM” which is a three-step approach (model selection, prediction, testing) aiming to address the aforementioned drawbacks.

Maintained by Farhad Shokoohi. Last updated 5 months ago.

differentialmethylationsequencinghiddenmarkovmodelcoverage

3.78 score 3 scripts

dcauseur

ERP:Significance Analysis of Event-Related Potentials Data

Functions for signal detection and identification designed for Event-Related Potentials (ERP) data in a linear model framework. The functional F-test proposed in Causeur, Sheu, Perthame, Rufini (2018, submitted) for analysis of variance issues in ERP designs is implemented for signal detection (tests for mean difference among groups of curves in One-way ANOVA designs for example). Once an experimental effect is declared significant, identification of significant intervals is achieved by the multiple testing procedures reviewed and compared in Sheu, Perthame, Lee and Causeur (2016, <DOI:10.1214/15-AOAS888>). Some of the methods gathered in the package are the classical FDR- and FWER-controlling procedures, also available using function p.adjust. The package also implements the Guthrie-Buchwald procedure (Guthrie and Buchwald, 1991 <DOI:10.1111/j.1469-8986.1991.tb00417.x>), which accounts for the auto-correlation among t-tests to control erroneous detection of short intervals. The Adaptive Factor-Adjustment method is an extension of the method described in Causeur, Chu, Hsieh and Sheu (2012, <DOI:10.3758/s13428-012-0230-0>). It assumes a factor model for the correlation among tests and combines adaptively the estimation of the signal and the updating of the dependence modelling (see Sheu et al., 2016, <DOI:10.1214/15-AOAS888> for further details).

Maintained by David Causeur. Last updated 5 years ago.

3.30 score 20 scripts

talegari

ggisotonic:'ggplot2' Friendly Isotonic or Monotonic Regression Curves

Provides stat_isotonic() to add weighted univariate isotonic regression curves.

Maintained by Komala Sheshachala Srikanth. Last updated 3 years ago.

1 stars 2.70 score 3 scripts