Showing 171 of total 171 results (show query)

samhforbes

PupillometryR:A Unified Pipeline for Pupillometry Data

Provides a unified pipeline to clean, prepare, plot, and run basic analyses on pupillometry experiments.

Maintained by Samuel Forbes. Last updated 2 years ago.

44 stars 7.58 score 288 scripts 1 dependents

cran

fds:Functional Data Sets

Functional data sets.

Maintained by Han Lin Shang. Last updated 6 years ago.

1 stars 4.79 score 148 dependents

cran

ftsa:Functional Time Series Analysis

Functions for visualizing, modeling, forecasting and hypothesis testing of functional time series.

Maintained by Han Lin Shang. Last updated 1 months ago.

6 stars 4.61 score 10 dependents

hdvinod

generalCorr:Generalized Correlations, Causal Paths and Portfolio Selection

Function gmcmtx0() computes a more reliable (general) correlation matrix. Since causal paths from data are important for all sciences, the package provides many sophisticated functions. causeSummBlk() and causeSum2Blk() give easy-to-interpret causal paths. Let Z denote control variables and compare two flipped kernel regressions: X=f(Y, Z)+e1 and Y=g(X, Z)+e2. Our criterion Cr1 says that if |e1*Y|>|e2*X| then variation in X is more "exogenous or independent" than in Y, and the causal path is X to Y. Criterion Cr2 requires |e2|<|e1|. These inequalities between many absolute values are quantified by four orders of stochastic dominance. Our third criterion Cr3, for the causal path X to Y, requires new generalized partial correlations to satisfy |r*(x|y,z)|< |r*(y|x,z)|. The function parcorVec() reports generalized partials between the first variable and all others. The package provides several R functions including get0outliers() for outlier detection, bigfp() for numerical integration by the trapezoidal rule, stochdom2() for stochastic dominance, pillar3D() for 3D charts, canonRho() for generalized canonical correlations, depMeas() measures nonlinear dependence, and causeSummary(mtx) reports summary of causal paths among matrix columns. Portfolio selection: decileVote(), momentVote(), dif4mtx(), exactSdMtx() can rank several stocks. Functions whose names begin with 'boot' provide bootstrap statistical inference, including a new bootGcRsq() test for "Granger-causality" allowing nonlinear relations. A new tool for evaluation of out-of-sample portfolio performance is outOFsamp(). Panel data implementation is now included. See eight vignettes of the package for theory, examples, and usage tips. See Vinod (2019) \doi{10.1080/03610918.2015.1122048}.

Maintained by H. D. Vinod. Last updated 1 years ago.

2 stars 4.48 score 63 scripts 1 dependents

weiguonimh

mMARCH.AC:Processing of Accelerometry Data with 'GGIR' in mMARCH

Mobile Motor Activity Research Consortium for Health (mMARCH) is a collaborative network of studies of clinical and community samples that employ common clinical, biological, and digital mobile measures across involved studies. One of the main scientific goals of mMARCH sites is developing a better understanding of the inter-relationships between accelerometry-measured physical activity (PA), sleep (SL), and circadian rhythmicity (CR) and mental and physical health in children, adolescents, and adults. Currently, there is no consensus on a standard procedure for a data processing pipeline of raw accelerometry data, and few open-source tools to facilitate their development. The R package 'GGIR' is the most prominent open-source software package that offers great functionality and tremendous user flexibility to process raw accelerometry data. However, even with 'GGIR', processing done in a harmonized and reproducible fashion requires a non-trivial amount of expertise combined with a careful implementation. In addition, novel accelerometry-derived features of PA/SL/CR capturing multiscale, time-series, functional, distributional and other complimentary aspects of accelerometry data being constantly proposed and become available via non-GGIR R implementations. To address these issues, mMARCH developed a streamlined harmonized and reproducible pipeline for loading and cleaning raw accelerometry data, extracting features available through 'GGIR' as well as through non-GGIR R packages, implementing several data and feature quality checks, merging all features of PA/SL/CR together, and performing multiple analyses including Joint Individual Variation Explained (JIVE), an unsupervised machine learning dimension reduction technique that identifies latent factors capturing joint across and individual to each of three domains of PA/SL/CR. In detail, the pipeline generates all necessary R/Rmd/shell files for data processing after running 'GGIR' (v2.4.0) for accelerometer data. In module 1, all csv files in the 'GGIR' output directory were read, transformed and then merged. In module 2, the 'GGIR' output files were checked and summarized in one excel sheet. In module 3, the merged data was cleaned according to the number of valid hours on each night and the number of valid days for each subject. In module 4, the cleaned activity data was imputed by the average Euclidean norm minus one (ENMO) over all the valid days for each subject. Finally, a comprehensive report of data processing was created using Rmarkdown, and the report includes few exploratory plots and multiple commonly used features extracted from minute level actigraphy data. Reference: Guo W, Leroux A, Shou S, Cui L, Kang S, Strippoli MP, Preisig M, Zipunnikov V, Merikangas K (2022) Processing of accelerometry data with GGIR in Motor Activity Research Consortium for Health (mMARCH) Journal for the Measurement of Physical Behaviour, 6(1): 37-44.

Maintained by Wei Guo. Last updated 2 years ago.

openjdk

2 stars 4.41 score 26 scripts

dennisprangle

gk:g-and-k and g-and-h Distribution Functions

Functions for the g-and-k and generalised g-and-h distributions.

Maintained by Dennis Prangle. Last updated 2 years ago.

5 stars 3.72 score 21 scripts

nenuial

geographer:Geography Vizualisations

Provides function and objects to establish vizualisations for my Geography lessons.

Maintained by Pascal Burkhard. Last updated 1 months ago.

2 stars 3.08 score

nenuial

geovizr:Support for Knitr (Quarto/Rmd)

Provide support functions for Quarto and Rmd documents.

Maintained by Pascal Burkhard. Last updated 1 months ago.

2.60 score 3 scripts

mpbohorquezc

SpatFD:Functional Geostatistics: Univariate and Multivariate Functional Spatial Prediction

Performance of functional kriging, cokriging, optimal sampling and simulation for spatial prediction of functional data. The framework of spatial prediction, optimal sampling and simulation are extended from scalar to functional data. 'SpatFD' is based on the Karhunen-Loรจve expansion that allows to represent the observed functions in terms of its empirical functional principal components. Based on this approach, the functional auto-covariances and cross-covariances required for spatial functional predictions and optimal sampling, are completely determined by the sum of the spatial auto-covariances and cross-covariances of the respective score components. The package provides new classes of data and functions for modeling spatial dependence structure among curves. The spatial prediction of curves at unsampled locations can be carried out using two types of predictors, and both of them report, the respective variances of the prediction error. In addition, there is a function for the determination of spatial locations sampling configuration that ensures minimum variance of spatial functional prediction. There are also two functions for plotting predicted curves at each location and mapping the surface at each time point, respectively. References Bohorquez, M., Giraldo, R., and Mateu, J. (2016) <doi:10.1007/s10260-015-0340-9>, Bohorquez, M., Giraldo, R., and Mateu, J. (2016) <doi:10.1007/s00477-016-1266-y>, Bohorquez M., Giraldo R. and Mateu J. (2021) <doi:10.1002/9781119387916>.

Maintained by Martha Patricia Bohorquez Castaรฑeda. Last updated 9 months ago.

1.70 score 7 scripts

eguidotti

yuimaGUI:A Graphical User Interface for the 'yuima' Package

Provides a graphical user interface for the 'yuima' package.

Maintained by Emanuele Guidotti. Last updated 3 years ago.

1.00 score 2 scripts